
.NET Data Access
Architecture Guide

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft, ActiveX, Microsoft Press, Visual Basic, Visual Studio, and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

© 2003 Microsoft Corporation. All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

.NET Data Access Architecture Guide
Introduction . 1

Who Should Read This Document . 2
What You Must Know . 2
What’s New . 2

Introducing ADO.NET . 2
.NET Data Providers . 5
Stored Procedures vs. Direct SQL . 8
Properties vs. Constructor Arguments . 9

Managing Database Connections . 9
Using Connection Pooling . 10
Storing Connection Strings . 15
Connection Usage Patterns . 20

Error Handling . 22
.NET Exceptions. 22
Generating Errors from Stored Procedures . 26

Performance . 29
Retrieving Multiple Rows . 29
Retrieving a Single Row . 34
Retrieving a Single Item . 35

Connecting Through Firewalls . 36
Choosing a Network Library . 37
Distributed Transactions . 39

Handling BLOBs . 39
Where to Store BLOB Data . 40

Performing Database Updates with DataSets . 42
Update Usage Patterns . 43
Initializing DataAdapters for Update . 43
Using Stored Procedures . 44
Managing Concurrency . 44
Correctly Updating Null Fields . 45
More Information . 46

Using Strongly Typed DataSet Objects . 46
When to Use Strongly Typed DataSets . 46
Generating DataSet Classes . 47

Working with Null Data Fields . 48
Transactions . 49

Choosing a Transaction Model . 50
Using Manual Transactions . 51
Using Automatic Transactions . 52

Contentsiv

Data Paging . 57
Comparing the Options . 57
Using the Fill Method of SqlDataAdapter . 58
Using ADO . 58
Using a Manual Implementation . 59

Appendix . 62
How to Enable Object Construction for a .NET Class . 62
How to Use a SqlDataAdapter To Retrieve Multiple Rows . 64
How to Use a SqlDataReader to Retrieve Multiple Rows . 64
How to Use an XmlReader to Retrieve Multiple Rows . 66
How to Use Stored Procedure Output Parameters to Retrieve a Single Row 67
How to Use a SqlDataReader to Retrieve a Single Row . 68
How to Use ExecuteScalar to Retrieve a Single Item . 69
How to Use a Stored Procedure Output or Return Parameter

to Retrieve a Single Item . 70
How to Use a SqlDataReader to Retrieve a Single Item . 72
How to Code ADO.NET Manual Transactions . 73
How to Perform Transactions with Transact-SQL . 74
How to Code a Transactional .NET Class . 75
Authors . 77
Collaborators . 77

Additional Resources . 79

.NET Data Access
Architecture Guide

Introduction
If you are designing a data access layer for a .NET-based application, you should use
Microsoft® ADO.NET as the data access model. ADO.NET is feature rich and
supports the data access requirements of loosely coupled, multitier Web applications
and Web services. As with other feature-rich object models, ADO.NET offers a
number of ways to solve a particular problem.

The .NET Data Access Architecture Guide provides information to help you choose
the most appropriate data access approach. It does this by describing a wide range
of common data access scenarios, providing performance tips, and prescribing best
practices. This guide also provides answers to frequently asked questions, such as:
Where is the best place to store database connection strings? How should I
implement connection pooling? How should I work with transactions? How should
I implement paging to allow users to scroll through large numbers of records?

This guide focuses on the use of ADO.NET to access Microsoft SQL Server™ 2000 by
using the SQL Server .NET data provider, one of the two providers shipped with
ADO.NET. Where appropriate, this guide highlights any differences that you need
to be aware of when you use the OLE DB .NET data provider to access other OLE
DB–aware data sources.

For a concrete implementation of a data access component developed using the
guidelines and best practices discussed in this document, see the Data Access
Application Block. The Data Access Application Block includes the source code for
the implementation, and you can use that code directly in your .NET-based
applications.

The .NET Data Access Architecture Guide includes the following sections:
� Introducing ADO.NET
� Managing Database Connections
� Error Handling
� Performance
� Connecting Through Firewalls
� Handling BLOBs

2 Microsoft <book title>

� Performing Database Updates with DataSets
� Using Strongly Typed DataSet Objects
� Working with Null Data Fields
� Transactions
� Data Paging

Who Should Read This Document
This document provides guidelines for application architects and enterprise
developers who want to build .NET-based applications. Read this document if you
are responsible for designing and developing the data tier of a multitier .NET-based
application.

What You Must Know
To use this guide to build .NET-based applications, you must have experience
developing data access code using ActiveX® Data Objects (ADO) and/or OLE DB,
as well as SQL Server experience. You must understand how to develop managed
code for the .NET platform, and you must be aware of the fundamental changes that
the ADO.NET data access model introduces. For more information about .NET
development, see http://msdn.microsoft.com/net.

What’s New
This document has been updated to include sections on performing database
updates, using typed DataSets, and using null data fields.

As indicated in the text, some of the content in this guide applies specifically to the
Microsoft Visual Studio® 2003 development system and the .NET Framework SDK
version 1.1.

Introducing ADO.NET
ADO.NET is the data access model for .NET-based applications. It can be used to
access relational database systems such as SQL Server 2000, Oracle, and many other
data sources for which there is an OLE DB or ODBC provider. To a certain extent,
ADO.NET represents the latest evolution of ADO technology. However, ADO.NET
introduces some major changes and innovations that are aimed at the loosely
coupled — and inherently disconnected — nature of Web applications. For a
comparison of ADO and ADO.NET, see the MSDN article “ADO.NET for the ADO
Programmer,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dndotnet/html/adonetprogmsdn.asp.

.NET Data Access Architecture Guide 3

One of the key changes that ADO.NET introduces is the replacement of the ADO
Recordset object with a combination of the DataTable, DataSet, DataAdapter, and
DataReader objects. A DataTable represents a collection of rows from a single table,
and in this respect is similar to the Recordset. A DataSet represents a collection of
DataTable objects, together with the relationships and constraints that bind the
various tables together. In effect, the DataSet is an in-memory relational structure
with built-in XML support.

One of the key characteristics of the DataSet is that it has no knowledge of the
underlying data source that might have been used to populate it. It is a
disconnected, stand-alone entity used to represent a collection of data, and it can be
passed from component to component through the various layers of a multitier
application. It can also be serialized as an XML data stream, which makes it ideally
suited for data transfer between heterogeneous platforms. ADO.NET uses the
DataAdapter object to channel data to and from the DataSet and the underlying
data source. The DataAdapter object also provides enhanced batch update features
previously associated with the Recordset.

Figure 1 on the next page shows the full DataSet object model.

4 Microsoft <book title>

DataSet

DataRelationCollection

ExtendedProperties

DataTableCollection

DataView

ChildRelations

ParentRelations

Constraints

ExtendedProperties

PrimaryKey

DataColumnCollection

ExtendedProperties

DataColumn

DataRowCollection

DataRow

DataTable

Figure 1.1
DataSet object model

.NET Data Access Architecture Guide 5

.NET Data Providers
ADO.NET relies on the services of .NET data providers. These provide access to the
underlying data source, and they comprise four key objects (Connection, Com-
mand, DataReader, and DataAdapter).

Currently, ADO.NET ships with two categories of providers: bridge providers and
native providers. Bridge providers, such as those supplied for OLE DB and ODBC,
allow you to use data libraries designed for earlier data access technologies. Native
providers, such as the SQL Server and Oracle providers, typically offer performance
improvements due, in part, to the fact that there is one less layer of abstraction.
� The SQL Server .NET Data Provider. This is a provider for Microsoft

SQL Server 7.0 and later databases. It is optimized for accessing SQL Server, and
it communicates directly with SQL Server by using the native data transfer
protocol of SQL Server.
Always use this provider when you connect to SQL Server 7.0 or
SQL Server 2000.

� The Oracle .NET Data Provider. The .NET Framework Data Provider for Oracle
enables data access to Oracle data sources through Oracle client connectivity
software. The data provider supports Oracle client software version 8.1.7 and
later.

� The OLE DB .NET Data Provider. This is a managed provider for OLE DB data
sources. It is slightly less efficient than the SQL Server .NET Data Provider,
because it calls through the OLE DB layer when communicating with the data-
base. Note that this provider does not support the OLE DB provider for Open
Database Connectivity (ODBC), MSDASQL. For ODBC data sources, use the
ODBC .NET Data Provider (described later) instead. For a list of OLE DB provid-
ers that are compatible with ADO.NET, see http://msdn.microsoft.com/library/en-us
/cpguidnf/html/cpconadonetproviders.asp.

Other .NET data providers currently in beta testing include:
� The ODBC .NET Data Provider. The .NET Framework Data Provider for ODBC

uses native ODBC Driver Manager (DM) to enable data access by means of COM
interoperability.

� A managed provider for retrieving XML from SQL Server 2000. The XML for
SQL Server Web update 2 (currently in beta) includes a managed provider specifi-
cally for retrieving XML from SQL Server 2000. For more information about this
update, see http://msdn.microsoft.com/library/default.asp?url=/nhp
/default.asp?contentid=28001300.

For a more detailed overview of the different data providers, see “.NET Framework
Data Providers” in the .NET Framework Developer’s Guide, at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconadonetproviders.asp.

6 Microsoft <book title>

Namespace Organization
The types (classes, structs, enums, and so on) associated with each .NET data pro-
vider are located in their own namespaces:
� System.Data.SqlClient. Contains the SQL Server .NET Data Provider types.
� System.Data.OracleClient. Contains the Oracle .NET Data Provider
� System.Data.OleDb. Contains the OLE DB .NET Data Provider types.
� System.Data.Odbc. Contains the ODBC .NET Data Provider types.
� System.Data. Contains provider-independent types such as the DataSet and

DataTable.

Within its associated namespace, each provider provides an implementation of the
Connection, Command, DataReader, and DataAdapter objects. The SqlClient
implementations are prefixed with “Sql” and the OleDb implementations are
prefixed with “OleDb.” For example, the SqlClient implementation of the Connec-
tion object is SqlConnection, and the OleDb equivalent is OleDbConnection.
Similarly, the two incarnations of the DataAdapter object are SqlDataAdapter and
OleDbDataAdapter, respectively.

In this guide, the examples are drawn from the SQL Server object model. Although
not illustrated here, similar features are available in Oracle/OLEDB and ODBC.

Generic Programming

If you are likely to target different data sources and want to move your code from
one to the other, consider programming to the IDbConnection, IDbCommand,
IDataReader, and IDbDataAdapter interfaces located within the System.Data
namespace. All implementations of the Connection, Command, DataReader, and
DataAdapter objects must support these interfaces.

For more information about implementing .NET data providers, see http://
msdn.microsoft.com/library/en-us/cpguidnf/html/cpconimplementingnetdataprovider.asp.

It should also be noted that both the OLE DB and ODBC bridging providers are
alternatives if an application uses a single object model to access multiple databases.
In this situation, it is important to consider the application’s need for flexibility, and
the extent to which database-specific functionality is required, in comparison with
the application’s need for performance.

Figure 2 illustrates the data access stack and how ADO.NET relates to other data
access technologies, including ADO and OLE DB. It also shows the two managed
providers and the principal objects within the ADO.NET model.

.NET Data Access Architecture Guide 7

SQL Server 7.0
and later

TDS

SQL Server
6.5 and later

.NET Managed Clients

WebForm Apps

OLE DB Provider

Access Oracle

Microsoft.Jet.
OLEDB.4.0

WinForm Apps

ADO

Oracle

MS ODBC
for Oracle

Access

MS Access
Driver

SQL Server

SQL Server

ODBC Driver
Manager

ADO.NET

Unmanaged
Clients

Oracle 8.1.7
and later

Oracle Call
Interface

OLE DB Provider for SQL
Server (SQLOLEDB)

OLE DB Provider for
ODBC (MSDASQL)

DataSet
DataTable

OLE DB .NET
Data Provider

Oracle .NET
Data Provider

SQL Server .NET
Data Provider

ODBC .NET
Data Provider

OleDbConnection

OleDbCommand

OleDbDataAdapter

OleDbDataReader

SqlConnection

SqlCommand

SqlDataReader

ODBCConnection

ODBCCommand

ODBCDataAdapter

ODBCDataReader

OracleConnection

OracleCommand

OracleDataAdapter

OracleDataReader

SqlDataAdapter

OLE DB Provider for
Oracle (MSDAORA)

Figure 1.2
Data access stack

8 Microsoft <book title>

For more information about the evolution of ADO to ADO.NET, see the article
“Introducing ADO+: Data Access Services for the Microsoft .NET Framework” in the
November 2000 issue of MSDN Magazine, at http://msdn.microsoft.com/msdnmag
/issues/1100/adoplus/default.aspx.

Stored Procedures vs. Direct SQL
Most code fragments shown in this document use SqlCommand objects to call
stored procedures to perform database manipulation. In some cases, you will not see
the SqlCommand object because the stored procedure name is passed directly to a
SqlDataAdapter object. Internally, this still results in the creation of a SqlCommand
object.

You should use stored procedures instead of embedded SQL statements for a num-
ber of reasons:
� Stored procedures generally result in improved performance because the data-

base can optimize the data access plan used by the procedure and cache it for
subsequent reuse.

� Stored procedures can be individually secured within the database. A client can
be granted permissions to execute a stored procedure without having any per-
missions on the underlying tables.

� Stored procedures result in easier maintenance because it is generally easier to
modify a stored procedure than it is to change a hard-coded SQL statement
within a deployed component.

� Stored procedures add an extra level of abstraction from the underlying database
schema. The client of the stored procedure is isolated from the implementation
details of the stored procedure and from the underlying schema.

� Stored procedures can reduce network traffic, because SQL statements can be
executed in batches rather than sending multiple requests from the client.

The SQL Server online documentation strongly recommends that you do not create
any stored procedures using “sp_” as a name prefix because such names have been
designated for system stored procedures. SQL Server always looks for stored proce-
dures beginning with sp_ in this order:
1. Look for the stored procedure in the master database.
2. Look for the stored procedure based on any qualifiers provided (database name

or owner).
3. Look for the stored procedure, using dbo as the owner if an owner is not

specified.

.NET Data Access Architecture Guide 9

Properties vs. Constructor Arguments
You can set specific property values of ADO.NET objects either through constructor
arguments or by directly setting the properties. For example, the following code
fragments are functionally equivalent.

// Use constructor arguments to configure command object
SqlCommand cmd = new SqlCommand("SELECT * FROM PRODUCTS", conn);

// The above line is functionally equivalent to the following
// three lines which set properties explicitly
sqlCommand cmd = new SqlCommand();
cmd.Connection = conn;
cmd.CommandText = "SELECT * FROM PRODUCTS";

From a performance perspective, there is negligible difference between the two
approaches because setting and getting properties against .NET objects is more
efficient than performing similar operations against COM objects.

The choice is one of personal preference and coding style. The explicit setting of
properties does, however, make the code easier to comprehend (particularly if you
are not familiar with the ADO.NET object model) and easier to debug.

Note: In the past, developers of the Microsoft Visual Basic® development system were advised
to avoid creating objects with the “Dim x As New…” construct. In the world of COM, this code
could result in the short circuit of the COM object creation process, leading to some subtle and
some not-so-subtle bugs. In the .NET world, however, this is no longer an issue.

Managing Database Connections
Database connections represent a critical, expensive, and limited resource, particu-
larly in a multitier Web application. It is imperative that you manage your connec-
tions correctly because your approach can significantly affect the overall scalability
of your application. Also, think carefully about where to store connection strings.
You need a configurable and secure location.

When managing database connections and connection strings, you should strive to:
� Help realize application scalability by multiplexing a pool of database connec-

tions across multiple clients.
� Adopt a configurable and high performance connection pooling strategy.
� Use Windows authentication when accessing SQL Server.
� Avoid impersonation in the middle tier.
� Store connection strings securely.
� Open database connections late and close them early.

10 Microsoft <book title>

This section discusses connection pooling and will help you choose an appropriate
connection pooling strategy. This section also considers how you should manage,
store, and administer your database connection strings. Finally, this section presents
two coding patterns that you can use to help ensure that connections are closed
reliably and returned to the connection pool.

Using Connection Pooling
Database connection pooling allows an application to reuse an existing connection
from a pool instead of repeatedly establishing a new connection with the database.
This technique can significantly increase the scalability of an application, because a
limited number of database connections can serve a much larger number of clients.
This technique also improves performance, because the significant time required to
establish a new connection can be avoided.

Data access technologies such as ODBC and OLE DB provide forms of connection
pooling, which are configurable to varying degrees. Both approaches are largely
transparent to the database client application. OLE DB connection pooling is often
referred to as session or resource pooling.

For a general discussion of pooling within Microsoft Data Access Components
(MDAC), see “Pooling in the Microsoft Data Access Components,” at
http://msdn.microsoft.com/library/en-us/dnmdac/html/pooling2.asp.

ADO.NET data providers provide transparent connection pooling, the exact
mechanics of which vary for each provider. This section discusses connection pool-
ing in relation to:
� The SQL Server .NET Data Provider
� The Oracle .NET Data Provider
� The OLE DB .NET Data Provider
� The ODBC .NET Data Provider

Pooling with the SQL Server .NET Data Provider
If you are using the SQL Server .NET Data Provider, use the connection pooling
support offered by the provider. It is a transaction-aware and efficient mechanism
implemented internally by the provider, within managed code. Pools are created on
a per application domain basis, and pools are not destroyed until the application
domain is unloaded.

You can use this form of connection pooling transparently, but you should be aware
of how pools are managed and of the various configuration options that you can use
to fine-tune connection pooling.

In many cases, the default connection pooling settings for the SQL Server .NET data
provider may be sufficient for your application. During the development and testing

.NET Data Access Architecture Guide 11

of your .NET-based application, it is recommended that you simulate projected
traffic patterns to determine if modifications to the connection pool size are
required.

Developers building scalable, high performance applications should minimize the
amount of time a connection is used, keeping it open for only as long as it takes to
retrieve or update data. When a connection is closed, it is returned to the connection
pool and made available for reuse. In this case, the actual connection to the database
is not severed; however, if connection pooling is disabled, the actual connection to
the database will be closed.

Developers should be careful not to rely on the garbage collector to free connections
because a connection is not necessarily closed when the reference goes out of scope.
This a common source of connection leaks, resulting in connection exceptions when
new connections are requested.

Configuring SQL Server .NET Data Provider Connection Pooling

You can configure connection pooling by using a set of name-value pairs, supplied
by means of the connection string. For example, you can configure whether or not
pooling is enabled (it is enabled by default), the maximum and minimum pool sizes,
and the amount of time that a queued request to open a connection can block. The
following is an example connection string that configures the maximum and mini-
mum pool sizes.

"Server=(local); Integrated Security=SSPI; Database=Northwind;
Max Pool Size=75; Min Pool Size=5"

When a connection is opened and a pool is created, multiple connections are added
to the pool to bring the connection count to the configured minimum level. Connec-
tions can be subsequently added to the pool up to the configured maximum pool
count. When the maximum count is reached, new requests to open a connection are
queued for a configurable duration.

Choosing Pool Sizes

Being able to establish a maximum threshold is very important for large-scale
systems that manage the concurrent requests of many thousands of clients. You need
to monitor connection pooling and the performance of your application to deter-
mine the optimum pool sizes for your system. The optimum size also depends on
the hardware on which you are running SQL Server.

During development, you might want to reduce the default maximum pool size
(currently 100) to help find connection leaks.

If you establish a minimum pool size, you will incur a small performance overhead
when the pool is initially populated to bring it to that level, although the first few
clients that connect will benefit. Note that the process of creating new connections is

12 Microsoft <book title>

serialized, which means that your server will not be flooded with simultaneous
requests when a pool is being initially populated.

For more details about monitoring connection pooling, see the Monitoring Connec-
tion Pooling section in this document. For a complete list of connection pooling
connection string keywords, see “Connection Pooling for the .NET Framework Data
Provider for SQL Server” in the .NET Framework Developer’s Guide, at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconconnectionpoolingforsqlservernetdataprovider.asp.

More Information

When using SQL Server .NET Data Provider connection pooling, be aware of the
following:
� Connections are pooled through an exact match algorithm on the connection

string. The pooling mechanism is even sensitive to spaces between name-value
pairs. For example, the following two connection strings will result in two sepa-
rate pools because the second contains an extra space character.

SqlConnection conn = new SqlConnection(
 "Integrated Security=SSPI;Database=Northwind");
conn.Open(); // Pool A is created

SqlConmection conn = new SqlConnection(
 "Integrated Security=SSPI ; Database=Northwind");
conn.Open(); // Pool B is created (extra spaces in string)

� The connection pool is divided into multiple transaction-specific pools and one
pool for connections not currently enlisted in a transaction. For threads associ-
ated with a particular transaction context, a connection from the appropriate pool
(containing connections enlisted with that transaction) is returned. This makes
working with enlisted connections a transparent process.

Pooling with the OLE DB .NET Data Provider
The OLE DB .NET Data Provider pools connections by using the underlying services
of OLE DB resource pooling. You have a number of options for configuring resource
pooling:
� You can use the connection string to configure, enable, or disable resource pool-

ing.
� You can use the registry.
� You can programmatically configure resource pooling.

To circumvent registry-related deployment issues, avoid using the registry to config-
ure OLE DB resource pooling.

.NET Data Access Architecture Guide 13

For more details about OLE DB resource pooling, see “Resource Pooling” in Chapter
19, “OLE DB Services” of the OLE DB Programmer’s Reference, at http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm
/olprcore_chapter19.asp.

Managing Connection Pooling with Pooled Objects
As Windows DNA developers, you were encouraged to disable OLE DB resource
pooling and/or ODBC connection pooling and use COM+ object pooling as a
technique to pool database connections. There are two primary reasons for this:
� Pool sizes and thresholds can be explicitly configured (in the COM+ catalog).
� Performance is improved. The pooled object approach can outperform native

pooling by a factor of two.

However, because the SQL Server .NET Data Provider uses pooling internally, you
no longer need to develop your own object pooling mechanism (when using this
provider). You can thus avoid the complexities associated with manual transaction
enlistment.

You might want to consider COM+ object pooling if you are using the OLE DB .NET
Data Provider to benefit from superior configuration and improved performance. If
you develop a pooled object for this purpose, you must disable OLE DB resource
pooling and automatic transaction enlistment (for example, by including “OLE DB
Services=-4” in the connection string). You must handle transaction enlistment
within your pooled object implementation.

Monitoring Connection Pooling
To monitor your application’s use of connection pooling, you can use the Profiler
tool that ships with SQL Server, or the Performance Monitor tool that ships with the
Microsoft Windows® 2000 operating system.

� To monitor connection pooling with SQL Server Profiler
1. Click Start, point to Programs, point to Microsoft SQL Server, and then click

Profiler to start Profiler.
2. On the File menu, point to New, and then click Trace.
3. Supply connection details, and then click OK.
4. In the Trace Properties dialog box, click the Events tab.
5. In the Selected event classes list, ensure that the Audit Login and Audit Logout

events are shown beneath Security Audit. To make the trace clearer, remove all
other events from the list.

6. Click Run to start the trace. You will see Audit Login events when connections
are established and Audit Logout events when connections are closed.

14 Microsoft <book title>

� To monitor connection pooling with Performance Monitor
1. Click Start, point to Programs, point to Administrative Tools, and then click

Performance to start Performance Monitor.
2. Right-click the graph background, and then click Add Counters.
3. In the Performance object drop-down list, click SQL Server: General Statistics.
4. In the list that appears, click User Connections.
5. Click Add, and then click Close.

Managing Security
Although database connection pooling improves the overall scalability of your
application, it means you can no longer manage security at the database. This is
because to support connection pooling, the connection strings must be identical. If
you need to track database operations on a per user basis, consider adding a param-
eter through which you can pass the user identity and manually log user actions in
the database. You need to add this parameter to each operation.

Using Windows Authentication
You should use Windows authentication when connecting to SQL Server because it
provides a number of benefits:
� Security is easier to manage because you work with a single (Windows) security

model rather than the separate SQL Server security model.
� You avoid embedding user names and passwords in connection strings.
� User names and passwords are not passed over the network in clear text.
� Logon security improves through password expiration periods, minimum

lengths, and account lockout after multiple invalid logon requests.

More Information

When you use Windows authentication to access SQL Server, use the following
guidelines:
� Consider performance tradeoffs. Performance tests have shown that it takes

longer to open a pooled database connection when using Windows authentica-
tion as compared to using SQL Server authentication. The .NET runtime version
1.1 has reduced the margin by which SQL Server security outperforms Windows
authentication, but SQL Server authentication is still faster.
However, although Windows authentication is still more expensive, the perfor-
mance reduction is relatively insignificant in comparison to the time it takes to
execute a command or stored procedure. As a result, in most cases the security
benefits of using Windows authentication outweigh this slight performance
degradation. Before making a decision, assess the performance requirements of
your application.

.NET Data Access Architecture Guide 15

� Avoid impersonation in the middle tier. Windows authentication requires a
Windows account for database access. Although it might seem logical to use
impersonation in the middle tier, avoid doing so because it defeats connection
pooling and has a severe impact on application scalability.
To address this problem, consider impersonating a limited number of Windows
accounts (rather than the authenticated principal) with each account representing
a particular role.
For example, you can use this approach:
1. Create two Windows accounts, one for read operations and one for write

operations. (Or, you might want separate accounts to mirror application-
specific roles. For example, you might want to use one account for Internet
users and another for internal operators and/or administrators.)

2. Map each account to a SQL Server database role, and establish the necessary
database permissions for each role.

3. Use application logic in your data access layer to determine which Windows
account to impersonate before you perform a database operation.

Note: Each account must be a domain account with Internet Information Services (IIS) and
SQL Server in the same domain or in trusted domains. Or, you can create matching ac-
counts (with the same name and password) on each computer.

� Use TCP/IP for your network library. SQL Server 7.0 and later support Windows
authentication for all network libraries. Use TCP/IP to gain configuration,
performance, and scalability benefits. For more information about using TCP/IP,
see the Connecting Through Firewalls section in this document.

For general guidance on developing secure ASP.NET and Web applications, refer to
the following Microsoft patterns & practices guides:
� Volume I, Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication, available at http://www.microsoft.com/practices
� Volume II, Improving Web Application Security: Threats and Countermeasures, which

will be available at http://www.microsoft.com/practices

Storing Connection Strings
To store database connection strings, you have a variety of options with different
degrees of flexibility and security. Although hard coding a connection string within
source code offers the best performance, file system caching ensures that the perfor-
mance degradation associated with storing the string externally in the file system is
negligible. The extra flexibility provided by an external connection string, which
supports administrator configuration, is preferred in virtually all cases.

16 Microsoft <book title>

When you are choosing an approach for connection string storage, the two most
important considerations are security and ease of configuration, closely followed by
performance.

You can choose among the following locations for storing database connection
strings:
� In an application configuration file; for example, Web.config for an ASP.NET Web

application
� In a Universal Data Link (UDL) file (supported only by the OLE DB .NET Data

Provider)
� In the Windows registry
� In a custom file
� In the COM+ catalog, by using construction strings (for serviced components

only)

By using Windows authentication to access SQL Server, you can avoid storing user
names and passwords in connection strings. If your security requirements demand
more stringent measures, consider storing the connection strings in encrypted
format.

For ASP.NET Web applications, storing the connection strings in encrypted format
within the Web.config file represents a secure and configurable solution.

Note: You can set the Persist Security Info named value to false in the connection string to
prevent security-sensitive details, such as the password, from being returned by means of the
ConnectionString property of the SqlConnection or OleDbConnection objects.

The following subsections discuss how to use the various options to store connec-
tion strings, and they present the relative advantages and disadvantages of each
approach. This will allow you to make an informed choice based on your specific
application scenario.

Note: The Configuration Application Management block allows you to manage configuration
settings — from database connections to complex hierarchical data. For more information, see
http://msdn.microsoft.com/practices.

Using XML Application Configuration Files
You can use the <appSettings> element to store a database connection string in the
custom settings section of an application configuration file. This element supports
arbitrary key-value pairs, as illustrated in the following fragment:

<configuration>
 <appSettings>
 <add key="DBConnStr"

.NET Data Access Architecture Guide 17

 value="server=(local);Integrated Security=SSPI;database=northwind"/>
 </appSettings>
</configuration>

Note: The <appSettings> element appears under the <configuration> element and not directly
under <system.web>.

Advantages
� Ease of deployment. The connection string is deployed along with the configura-

tion file through regular .NET xcopy deployment.
� Ease of programmatic access. The AppSettings property of the

ConfigurationSettings class makes reading the configured database connection
string an easy task at run time.

� Support of dynamic update (ASP.NET only). If an administrator updates the
connection string in a Web.config file, the change will be picked up the next time
the string is accessed, which for a stateless component is likely to be the next time
a client uses the component to make a data access request.

Disadvantages
� Security. Although the ASP.NET Internet Server Application Programming

Interface (ISAPI) dynamic-link library (DLL) prevents clients from directly
accessing files with a .config file extension and NTFS permissions can be used to
further restrict access, you might still want to avoid storing these details in clear
text on a front-end Web server. For added security, store the connection string in
encrypted format in the configuration file.

More Information
� You can retrieve custom application settings by using the static AppSettings

property of the System.Configuration.ConfigurationSettings class. This is
shown in the following code fragment, which assumes the previously illustrated
custom key called DBConnStr:

using System.Configuration;
private string GetDBaseConnectionString()
{
 return ConfigurationSettings.AppSettings["DBConnStr"];
}

� For more information about configuring .NET Framework applications, see
http://msdn.microsoft.com/library/en-us/cpguidnf/html
/cpconconfiguringnetframeworkapplications.asp.

18 Microsoft <book title>

Using UDL Files
The OLE DB .NET Data Provider supports Universal Data Link (UDL) file names in
its connection string. You can pass the connection string by using construction
arguments to the OleDbConnection object, or you can set the connection string by
using the object’s ConnectionString property.

Note: The SQL Server .NET Data Provider does not support UDL files in its connection string.
Therefore, this approach is available to you only if you are using the OLE DB .NET Data
Provider.

For the OLE DB provider, to reference a UDL file with the connection string, use
“File Name=name.udl.”

Advantages
� Standard approach. You might already be using UDL files for connection string

management.

Disadvantages
� Performance. Connection strings that contain UDLs are read and parsed each

time the connection is opened.
� Security. UDL files are stored as plain text. You can secure these files by using

NTFS file permissions, but doing so raises the same issues as with .config files.
� SqlClient does not support UDL files. This approach is not supported by the

SQL Server .NET Data Provider, which you use to access SQL Server 7.0 and later.

More Information
� To support administration, make sure that administrators have read/write access

to the UDL file and that the identity used to run your application has read access.
For ASP.NET Web applications, the application worker process runs by using the
SYSTEM account by default, although you can override this by using the
<processModel> element of the machine-wide configuration file
(Machine.config). You can also impersonate, optionally with a nominated ac-
count, by using the <identity> element of the Web.config file.

� For Web applications, make sure that you do not place the UDL file in a virtual
directory, which would make the file downloadable over the Web.

� For more information about these and other security-related ASP.NET features,
see “Authentication in ASP.NET: .NET Security Guidance,” at http://
msdn.microsoft.com/library/en-us/dnbda/html/authaspdotnet.asp.

Using the Windows Registry
You can also use a custom key in the Windows registry to store the connection
string, although this is not recommended due to deployment issues.

.NET Data Access Architecture Guide 19

Advantages
� Security. You can manage access to selected registry keys by using access control

lists (ACLs). For even higher levels of security, consider encrypting the data.
� Ease of programmatic access. .NET classes are available to support reading

strings from the registry.

Disadvantages
� Deployment. The relevant registry setting must be deployed along with your

application, somewhat defeating the advantage of xcopy deployment.

Using a Custom File
You can use a custom file to store the connection string. However, this technique
offers no advantages and is not recommended.

Advantages
� None.

Disadvantages
� Extra coding. This approach requires extra coding and forces you to deal explic-

itly with concurrency issues.
� Deployment. The file must be copied along with the other ASP.NET application

files. Avoid placing the file in the ASP.NET application directory or subdirectory
to prevent it from being downloaded over the Web.

Using Construction Arguments and the COM+ Catalog
You can store the database connection string in the COM+ catalog and have it
automatically passed to your object by means of an object construction string.
COM+ will call the object’s Construct method immediately after instantiating the
object, supplying the configured construction string.

Note: This approach works only for serviced components. Consider it only if your managed
components use other services, such as distributed transaction support or object pooling.

Advantages
� Administration. An administrator can easily configure the connection string by

using the Component Services MMC snap-in.

Disadvantages
� Security. The COM+ catalog is considered a non-secure storage area (although

you can restrict access with COM+ roles) and therefore must not be used to
maintain connection strings in clear text.

20 Microsoft <book title>

� Deployment. Entries in the COM+ catalog must be deployed along with your
.NET-based application. If you are using other enterprise services, such as distrib-
uted transactions or object pooling, storing the database connection string in the
catalog presents no additional deployment overhead, because the COM+ catalog
must be deployed to support those other services.

� Components must be serviced. You can use construction strings only for
serviced components. You should not derive your component’s class from
ServicedComponent (making your component serviced) simply to enable
construction strings.

Important: It is critical to secure connection strings. With SQL authentication, the connection
contains a user name and password. If an attacker exploits a source code vulnerability on the
Web server or gains access to the configuration store, the database will be vulnerable. To
prevent this, connection strings should be encrypted. For descriptions of different methods
available to encrypt plaintext connection strings, see Improving Web Application Security:
Threats and Countermeasures, which will be available at http://www.microsoft.com/practices.

More Information
� For more information about how to configure a .NET class for object construc-

tion, see How To Enable Object Construction For a .NET Class in the appendix.
� For more information about developing serviced components, see http://

msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwritingservicedcomponents.asp.
� For general guidance on developing secure ASP.NET and Web applications, refer

to the following Microsoft patterns & practices guides:
� Volume I, Building Secure ASP.NET Applications: Authentication, Authorization,

and Secure Communication, available at http://www.microsoft.com/practices
� Volume II, Improving Web Application Security: Threats and Countermeasures,

which will be available at http://www.microsoft.com/practices

Connection Usage Patterns
Irrespective of the .NET data provider you use, you must always:
� Open a database connection as late as possible.
� Use the connection for as short a period as possible.
� Close the connection as soon as possible. The connection is not returned to the

pool until it is closed through either the Close or Dispose method. You should
also close a connection even if you detect that it has entered the broken state. This
ensures that it is returned to the pool and marked as invalid. The object pooler
periodically scans the pool, looking for objects that have been marked as invalid.

To guarantee that the connection is closed before a method returns, consider one of
the approaches illustrated in the two code samples that follow. The first uses a

.NET Data Access Architecture Guide 21

finally block. The second uses a C# using statement, which ensures that an object’s
Dispose method is called.

The following code ensures that a finally block closes the connection. Note that this
approach works for both Visual Basic .NET and C# because Visual Basic .NET
supports structured exception handling.

public void DoSomeWork()
{
 SqlConnection conn = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("CommandProc", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 try
 {
 conn.Open();
 cmd.ExecuteNonQuery();
 }
 catch (Exception e)
 {
 // Handle and log error
 }
 finally
 {
 conn.Close();
 }
}

The following code shows an alternate approach that uses a C# using statement.
Note that Visual Basic .NET does not provide a using statement or any equivalent
functionality.

public void DoSomeWork()
{
 // using guarantees that Dispose is called on conn, which will
 // close the connection.
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 SqlCommand cmd = new SqlCommand("CommandProc", conn);
 fcmd.CommandType = CommandType.StoredProcedure;
 conn.Open();
 cmd.ExecuteQuery();
 }
}

You can also apply this approach to other objects — for example, SqlDataReader or
OleDbDataReader — which must be closed before anything else can be done with
the current connection.

22 Microsoft <book title>

Error Handling
ADO.NET errors are generated and handled through the underlying structured
exception handling support that is native to the .NET Framework. As a result, you
handle errors within your data access code in the same way that you handle errors
elsewhere in your application. Exceptions can be detected and handled through
standard .NET exception handling syntax and techniques.

This section shows you how to develop robust data access code and explains how to
handle data access errors. It also provides specific exception handling guidance
relating to the SQL Server .NET Data Provider.

.NET Exceptions
The .NET data providers translate database-specific error conditions into standard
exception types, which you should handle in your data access code. The database-
specific error details are made available to you through properties of the relevant
exception object.

All .NET exception types ultimately are derived from the base Exception class in the
System namespace. The .NET data providers throw provider-specific exception
types. For example, the SQL Server .NET Data Provider throws SqlException objects
whenever SQL Server returns an error condition. Similarly, the OLE DB .NET Data
Provider throws exceptions of type OleDbException, which contain details exposed
by the underlying OLE DB provider.

Figure 3 shows the .NET data provider exception hierarchy. Notice that the
OleDbException class is derived from ExternalException, the base class for all COM
Interop exceptions. The ErrorCode property of this object stores the COM HRESULT
generated by OLE DB.

.NET Data Access Architecture Guide 23

SQL Server .NET
Data Provider

Exception

SystemException

SqlException

Oracle .NET
Data Provider

Exception

SystemException

OracleException

ODBC .NET
Data Provider

Exception

SystemException

ODBCException

OLE DB .NET
Data Provider

OleDbException

Exception

SystemException

ExternalException

Figure 1.3
.NET Data Provider exception hierarchy

Catching and Handling .NET Exceptions
To handle data access exception conditions, place your data access code within a try
block and trap any exceptions generated by using catch blocks with the appropriate
filter. For example, when writing data access code by using the SQL Server .NET
Data Provider, you should catch exceptions of type SqlException, as shown in the
following code:

try
{
 // Data access code
}
catch (SqlException sqlex) // more specific

24 Microsoft <book title>

{
}
catch (Exception ex) // less specific
{
}

If you provide more than one catch statement with differing filter criteria, remember
to order them from most specific type to least specific type. That way, the most
specific type of catch block is executed for any given exception type.

This SqlException class exposes properties that contain details of the exception
condition. These include:
� A Message property that contains text describing the error.
� A Number property that contains the error number, which uniquely identifies the

type of error.
� A State property that contains additional information about the invocation state

of the error. This is usually used to indicate a particular occurrence of a specific
error condition. For example, if a single stored procedure can generate the same
error from more than one line, the state should be used to identify the specific
occurrence.

� An Errors collection, which contains detailed error information about the errors
that SQL Server generates. The Errors collection will always contain at least one
object of type SqlError.

The following code fragment illustrates how to handle a SQL Server error condition
by using the SQL Server .NET Data Provider:

using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

// Method exposed by a Data Access Layer (DAL) Component
public string GetProductName(int ProductID)
{
 SqlConnection conn = null;
 // Enclose all data access code within a try block
 try
 {
 conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind");
 conn.Open();
 SqlCommand cmd = new SqlCommand("LookupProductName", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add("@ProductID", ProductID);
 SqlParameter paramPN =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramPN.Direction = ParameterDirection.Output;

.NET Data Access Architecture Guide 25

 cmd.ExecuteNonQuery();
 // The finally code is executed before the method returns
 return paramPN.Value.ToString();
 }
 catch (SqlException sqlex)
 {
 // Handle data access exception condition
 // Log specific exception details
 LogException(sqlex);
 // Wrap the current exception in a more relevant
 // outer exception and re-throw the new exception
 throw new DALException(
 "Unknown ProductID: " + ProductID.ToString(), sqlex);
 }
 catch (Exception ex)
 {
 // Handle generic exception condition . . .
 throw ex;
 }
 finally
 {
 if(conn != null) conn.Close(); // Ensures connection is closed
 }
}

// Helper routine that logs SqlException details to the
// Application event log
private void LogException(SqlException sqlex)
{
 EventLog el = new EventLog();
 el.Source = "CustomAppLog";
 string strMessage;
 strMessage = "Exception Number : " + sqlex.Number +
 "(" + sqlex.Message + ") has occurred";
 el.WriteEntry(strMessage);

 foreach (SqlError sqle in sqlex.Errors)
 {
 strMessage = "Message: " + sqle.Message +
 " Number: " + sqle.Number +
 " Procedure: " + sqle.Procedure +
 " Server: " + sqle.Server +
 " Source: " + sqle.Source +
 " State: " + sqle.State +
 " Severity: " + sqle.Class +
 " LineNumber: " + sqle.LineNumber;
 el.WriteEntry(strMessage);
 }
}

Within the SqlException catch block, the code initially logs the exception details by
using the LogException helper function. This function uses a foreach statement to
enumerate the provider-specific details within the Errors collection and records the

26 Microsoft <book title>

error details to the error log. The code within the catch block then wraps the
SQL Server-specific exception within an exception of type DALException, which is
more meaningful to the callers of the GetProductName method. The exception
handler uses the throw keyword to propagate this exception back to the caller.

More Information
� For a full list of members of the SqlException class, see http://msdn.microsoft.com

/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlExceptionMembersTopic.asp.
� For further guidance about developing custom exceptions, logging and wrapping

.NET exceptions, and using various approaches to exception propagation, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/exceptdotnet.asp.

Generating Errors from Stored Procedures
Transact-SQL (T-SQL) provides a RAISERROR (note the spelling) function, which
you can use to generate custom errors and return them to the client. For ADO.NET
clients, the SQL Server .NET Data Provider intercepts these database errors and
translates them to SqlError objects.

The simplest way to use the RAISERROR function is to include the message text as
the first parameter, and then specify severity and state parameters, as shown in the
following code fragment.

RAISERROR('Unknown Product ID: %s', 16, 1, @ProductID)

In this example, a substitution parameter is used to return the current product ID as
part of the error message text. Parameter two is the message severity, and parameter
three is the message state.

More Information
� To avoid hard coding message text, you can add your own message to the

sysmessages table by using the sp_addmessage system stored procedure, or by
using the SQL Server Enterprise Manager. You can then reference the message by
using an ID passed to the RAISERROR function. The message IDs that you
define must be greater than 50,000, as shown in the following code fragment.

RAISERROR(50001, 16, 1, @ProductID)

� For full details relating to the RAISERROR function, look up RAISERROR in the
SQL Server Books Online index.

.NET Data Access Architecture Guide 27

Using Severity Levels Appropriately
Choose your error severity levels carefully and be aware of the impact of each level.
Error severity levels range from 0 to 25 and are used to indicate the type of problem
that SQL Server 2000 has encountered. In client code, you can obtain an error’s
severity by examining the Class property of the SqlError object, within the Errors
collection of the SqlException class. Table 1 indicates the impact and meaning of the
various severity levels.

Table 1. Error Severity Levels – Impact and Meaning

Severity Connection Generates Meaning
level is closed SqlException

10 and below No No Informational messages that do not
necessarily represent error conditions.

11–16 No Yes Errors that can be corrected by the user —
for example, by retrying the operation with
amended input data.

17–19 No Yes Resource or system errors.

20–25 Yes Yes Fatal system errors (including hardware
errors). Client’s connection is terminated.

Controlling Automatic Transactions
The SQL Server .NET Data Provider throws a SqlException for any error encoun-
tered with a severity greater than 10. When a component that is part of an automatic
(COM+) transaction detects a SqlException, the component must ensure that it
votes to abort the transaction. This might or might not be an automatic process, and
depends on whether or not the method is marked with the AutoComplete attribute.

For more information about handling SqlExceptions in the context of automatic
transactions, see the Determining Transaction Outcome section in this document.

Retrieving Informational Messages
Severity levels of 10 and lower are used to represent informational messages and do
not cause a SqlException to be raised.

To retrieve informational messages:
� Create an event handler and subscribe to the InfoMessage event exposed by the

SqlConnection object. This event’s delegate is shown in the following code
fragment.

public delegate void SqlInfoMessageEventHandler(object sender,
 SqlInfoMessageEventArgs e
);

28 Microsoft <book title>

Message data is available through the SqlInfoMessageEventArgs object passed to
your event handler. This object exposes an Errors property, which contains a set
of SqlError objects — one per informational message. The following code fragment
illustrates how to register an event handler that is used to log informational
messages.

public string GetProductName(int ProductID)
{
 SqlConnection conn = null;
 try
 {
 conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind");
 // Register a message event handler
 conn.InfoMessage += new SqlInfoMessageEventHandler(MessageEventHandler);
 conn.Open();
 // Setup command object and execute it
 . . .
 }
 catch (SqlException sqlex)
 {
 // log and handle exception
 . . .
 }
 finally
 {
 if(conn != null) conn.Close();
 }
}
// message event handler
void MessageEventHandler(object sender, SqlInfoMessageEventArgs e)
{
 foreach(SqlError sqle in e.Errors)
 {
 // Log SqlError properties
 . . .
 }
}

.NET Data Access Architecture Guide 29

Performance
This section introduces a number of common data access scenarios, and for each
one, provides details about the most high-performance and scalable solution in
terms of ADO.NET data access code. Where appropriate, performance, functionality,
and development effort are compared. This section considers the following func-
tional scenarios:
� Retrieving Multiple Rows. Retrieving a result set and iterating through the

retrieved rows.
� Retrieving a Single Row. Retrieving a single row with a specified primary key.
� Retrieving a Single Item. Retrieving a single item from a specified row.
� Determining the Existence of an Item of Data. Checking to see whether or not a

row with a particular primary key exists. This is a variation of the single item
lookup scenario in which a simple Boolean return is sufficient.

Retrieving Multiple Rows
In this scenario, you want to retrieve a tabulated set of data and iterate through the
retrieved rows to perform an operation. For example, you might want to retrieve a
set of data, work with it in disconnected fashion, and pass it to a client application
as an XML document (perhaps through a Web service). Alternatively, you might
want to display the data in the form of a HTML table.

To help determine the most appropriate data access approach, consider whether you
require the added flexibility of the (disconnected) DataSet object, or the raw perfor-
mance offered by the SqlDataReader object, which is ideally suited to data presenta-
tion in business-to consumer (B2C) Web applications. Figure 4 on the next page
shows the two basic scenarios.

Note: The SqlDataAdapter used to populate a DataSet internally uses a SqlDataReader to
access the data.

30 Microsoft <book title>

Disconnected Processing Scenario

DataSet

Data Access Component

SqlDataAdapter

XML Manipulation

XML Serialization
(Web Services

Heterogeneous Platforms)

Flexible Data
Binding

Batch Update

Disconnected Retrieval and Presentation Scenario

Data Access Component

SqlDataReaderWebForm

Figure 1.4
Multiple row data access scenarios

Comparing the Options
You have the following options when you retrieve multiple rows from a data source:
� Use a SqlDataAdapter object to generate a DataSet or DataTable.
� Use a SqlDataReader to provide a read-only, forward-only data stream.
� Use an XmlReader to provide a read-only, forward-only data stream of XML

data.

The choice between SqlDataReader and DataSet/DataTable is essentially one of
performance versus functionality. The SqlDataReader offers optimum performance;
the DataSet provides additional functionality and flexibility.

.NET Data Access Architecture Guide 31

Data Binding
All three of these objects can act as data sources for data-bound controls, although
the DataSet and DataTable can act as data sources for a wider variety of controls
than the SqlDataReader. This is because the DataSet and DataTable implement
IListSource (yielding IList), whereas the SqlDataReader implements IEnumerable.
A number of WinForm controls capable of data binding require a data source that
implements IList.

This difference is due to the type of scenario for which each object type is designed.
The DataSet (which includes the DataTable) is a rich, disconnected structure suited
to both Web and desktop (WinForm) scenarios. The data reader, on the other hand,
is optimized for Web applications that require optimized forward-only data access.

Check the data source requirements for the particular control type that you want to
bind to.

Passing Data Between Application Tiers
The DataSet provides a relational view of the data that can optionally be manipu-
lated as XML, and allows a disconnected cached copy of the data to be passed
between application tiers and components. The SqlDataReader, however, offers
optimum performance because it avoids the performance and memory overhead
associated with the creation of the DataSet. Remember that the creation of a DataSet
object can result in the creation of multiple sub-objects — including DataTable,
DataRow, and DataColumn objects — and the collection objects used as containers
for these sub-objects.

Using a DataSet
Use a DataSet populated by a SqlDataAdapter object when:
� You require a disconnected memory-resident cache of data, so that you can pass it

to another component or tier within your application.
� You require an in-memory relational view of the data for XML or non-XML

manipulation.
� You are working with data retrieved from multiple data sources, such as multiple

databases, tables, or files.
� You want to update some or all of the retrieved rows and use the batch update

facilities of the SqlDataAdapter.
� You want to perform data binding against a control that requires a data source

that supports IList.

32 Microsoft <book title>

Note: For detailed information, see “Designing Data Tier Components and Passing Data
Through Tiers” on the MSDN Web site at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/BOAGag.asp.

More Information
If you use a SqlDataAdapter to generate a DataSet or DataTable, note the
following:
� You do not need to explicitly open or close the database connection. The

SqlDataAdapter Fill method opens the database connection and then closes the
connection before it returns. If the connection is already open, Fill leaves the
connection open.

� If you require the connection for other purposes, consider opening it prior to
calling the Fill method. You can thus avoid unnecessary open/close operations
and gain a performance benefit.

� Although you can repeatedly use the same SqlCommand object to execute the
same command multiple times, do not reuse the same SqlCommand object to
execute different commands.

� For a code sample that shows how to use a SqlDataAdapter to populate a
DataSet or DataTable, see How to Use a SqlDataAdapter to Retrieve Multiple
Rows in the appendix.

Using a SqlDataReader
Use a SqlDataReader obtained by calling the ExecuteReader method of the
SqlCommand object when:
� You are dealing with large volumes of data — too much to maintain in a single

cache.
� You want to reduce the memory footprint of your application.
� You want to avoid the object creation overhead associated with the DataSet.
� You want to perform data binding with a control that supports a data source that

implements IEnumerable.
� You wish to streamline and optimize your data access.
� You are reading rows containing binary large object (BLOB) columns. You can use

the SqlDataReader to pull BLOB data in manageable chunks from the database,
instead of pulling all of it at once. For more details about handling BLOB data,
see the Handling BLOBs section in this document.

.NET Data Access Architecture Guide 33

More Information

If you use the SqlDataReader, note the following:
� The underlying connection to the database remains open and cannot be used for

any other purpose while the data reader is active. Call Close on the
SqlDataReader as soon as possible.

� There can be only one data reader per connection.
� You can close the connection explicitly when you finish with the data reader, or

tie the lifetime of the connection to the SqlDataReader object, by passing the
CommandBehavior.CloseConnection enumerated value to the ExecuteReader
method. This indicates that the connection should be closed when the
SqlDataReader is closed.

� When accessing data by using the reader, use the typed accessor methods (such
as GetInt32 and GetString) if you know the column’s underlying data type
because they reduce the amount of type conversion required when you read
column data.

� To avoid unnecessary data being pulled from server to client, if you want to close
the reader and discard any remaining results, call the command object’s Cancel
method before calling Close on the reader. Cancel ensures that the results are
discarded on the server and are not pulled unnecessarily to the client. Conversely,
calling Close on the data reader causes the reader to unnecessarily pull the
remaining results to empty the data stream.

� If you want to obtain output or return values returned from a stored procedure
and you are using the ExecuteReader method of the SqlCommand object, you
must call the Close method on the reader before the output and return values are
available.

� For a code sample that shows how to use a SqlDataReader, see How to Use a
SqlDataReader to Retrieve Multiple Rows in the appendix.

Using an XmlReader
Use an XmlReader obtained by calling the ExecuteXmlReader method of the
SqlCommand object when:
� You want to process the retrieved data as XML, but you do not want to incur the

performance overhead of creating a DataSet and do not require a disconnected
cache of data.

� You want to exploit the functionality of the SQL Server 2000 FOR XML clause,
which allows XML fragments (that is, XML documents with no root element) to
be retrieved from the database in a flexible manner. For example, this approach
lets you specify precise element names, whether an element or attribute-centric
schema should be used, whether a schema should be returned with the XML data
and so on.

34 Microsoft <book title>

More Information

If you use the XmlReader, note the following:
� The connection must remain open while you read data from the XmlReader. The

ExecuteXmlReader method of the SqlCommand object currently does not sup-
port the CommandBehavior.CloseConnection enumerated value, so you must
explicitly close the connection when you finish with the reader.

� For a code sample that shows how to use an XmlReader, see How To Use an
XmlReader to Retrieve Multiple Rows in the appendix.

Retrieving a Single Row
In this scenario, you want to retrieve a single row of data that contains a specified
set of columns from a data source. For example, you have a customer ID and want to
look up related customer details, or you have a product ID and want to retrieve
product information.

Comparing the Options
If you want to perform data binding with a single row retrieved from a data source,
you can use a SqlDataAdapter to populate a DataSet or DataTable in the same way
that is described in the Multiple Row Retrieval and Iteration scenario discussed
previously. However, unless you specifically require DataSet/DataTable functional-
ity, you should avoid creating these objects.

If you need to retrieve a single row, use one of the following options:
� Use stored procedure output parameters.
� Use a SqlDataReader object.

Both options avoid the unnecessary overhead of creating a result set on the server
and a DataSet on the client. The relative performance of each approach depends on
stress levels and whether or not database connection pooling is enabled. When
database connection pooling is enabled, performance tests have shown the stored
procedure approach to outperform the SqlDataReader approach by nearly 30
percent under high-stress conditions (200+ simultaneous connections).

Using Stored Procedure Output Parameters
Use stored procedure output parameters when you want to retrieve a single row
from a multitier Web application where you have enabled connection pooling.

More Information

For a code sample that shows how to use stored procedure output parameters, see
How To Use Stored Procedure Output Parameters To Retrieve a Single Row in the
appendix.

.NET Data Access Architecture Guide 35

Using a SqlDataReader
Use a SqlDataReader when:
� You require metadata in addition to data values. You can use the

GetSchemaTable method of the data reader to obtain column metadata.
� You are not using connection pooling. With connection pooling disabled, the

SqlDataReader is a good option under all stress conditions; performance tests
have shown it to outperform the stored procedure approach by around 20 percent
at 200 browser connections.

More Information

If you use a SqlDataReader, note the following:
� If you know your query only returns a single row, use the

CommandBehavior.SingleRow enumerated value when calling the
ExecuteReader method of the SqlCommand object. Some providers such as the
OLE DB .NET Data Provider use this hint to optimize performance. For example,
this provider performs binding by using the IRow interface (if it is available)
rather than the more expensive IRowset. This argument has no effect on the SQL
Server .NET Data Provider.

� If your SQL Server command contains output parameters or return values, they
will not be available until the DataReader is closed.

� When using the SqlDataReader object, always retrieve output parameters
through the typed accessor methods of the SqlDataReader object, for example
GetString and GetDecimal. This avoids unnecessary type conversions.

� .NET Framework version 1.1 includes an additional DataReader property called
HasRows, which enables you to determine if the DataReader has returned any
results before reading from it.

� For a code sample that shows how to use a SqlDataReader object to retrieve a
single row, see How To use a SqlDataReader to Retrieve a Single Row in the
appendix.

Retrieving a Single Item
In this scenario, you want to retrieve a single item of data. For example, you might
want to look up a single product name, given its ID, or a single customer credit
rating, given the customer’s name. In such scenarios, you will generally not want to
incur the overhead of a DataSet or even a DataTable when retrieving a single item.

You might also want simply to check whether a particular row exists in the database.
For example, as a new user registers on a Web site, you need to check whether or not
the chosen user name already exists. This is a special case of the single item lookup,
but in this case, a simple Boolean return is sufficient.

36 Microsoft <book title>

Comparing the Options
Consider the following options when you retrieve a single item of data from a data
source:
� Use the ExecuteScalar method of a SqlCommand object with a stored procedure.
� Use a stored procedure output or return parameter.
� Use a SqlDataReader object.

The ExecuteScalar method returns the data item directly because it is designed for
queries that only return a single value. It requires less code than either the stored
procedure output parameter or SqlDataReader approaches require..

From a performance perspective, you should use a stored procedure output or
return parameter because tests have shown that the stored procedure approach
offers consistent performance across low and high-stress conditions (from fewer
than 100 simultaneous browser connections to 200 browser connections).

More Information
When retrieving a single item, be aware of the following:
� If a query normally returns multiple columns and/or rows, executing it through

ExecuteQuery will return only the first column of the first row.
� For a code sample that shows how to use ExecuteScalar, see How To Use

ExecuteScalar to Retrieve a Single Item in the appendix.
� For a code sample that shows how to use a stored procedure output or return

parameter to retrieve a single item, see How To Use a Stored Procedure Output or
Return Parameter To Retrieve a Single Item in the appendix.

� For a code sample that shows how to use a SqlDataReader object to retrieve a
single item, see How To Use a SqlDataReader to Retrieve a Single Item in the
appendix.

Connecting Through Firewalls
You will often want to configure Internet applications to connect to SQL Server
through a firewall. For example, a key architectural component of many Web appli-
cations and their firewalls is the perimeter network (also known as DMZ or demili-
tarized zone), which is used to isolate front-end Web servers from internal networks.

Connecting to SQL Server through a firewall requires specific configuration of the
firewall, client, and server. SQL Server provides the Client Network Utility and
Server Network Utility programs to aid configuration.

.NET Data Access Architecture Guide 37

Choosing a Network Library
Use the SQL Server TCP/IP network library to simplify configuration when connect-
ing through a firewall. This is the SQL Server 2000 installation default. If you are
using an earlier version of SQL Server, check that you have configured TCP/IP as
the default network library on both the client and the server by using the Client
Network Utility and Server Network Utility, respectively.

In addition to the configuration benefit, using the TCP/IP library results means that
you:
� Benefit from improved performance with high volumes of data and improved

scalability.
� Avoid additional security issues associated with named pipes.

You must configure the client and server computers for TCP/IP. Because most
firewalls restrict the set of ports through which they allow traffic to flow, you must
also give careful consideration to the port numbers that SQL Server uses.

Configuring the Server
Default instances of SQL Server listen on port 1433. UDP port 1434 is also used to
allow SQL clients to locate other SQL servers on their network. Named instances of
SQL Server 2000, however, dynamically assign a port number when they are first
started. Your network administrator will not want to open a range of port numbers
on the firewall; therefore, when you use a named instance of SQL Server with a
firewall, use the Server Network Utility to configure the instance to listen on a specific
port number. Your administrator can then configure the firewall to allow traffic to the
specific IP address and port number that the server instance is listening on.

Note: The source port that the client network library uses is dynamically assigned in the range
1024 – 5000. This is standard practice for TCP/IP client applications, but it means your firewall
must allow traffic from any port within this range. For more information about the ports that
SQL Server uses, see Microsoft Knowledge Base article 287932, “INF: TCP Ports Needed for
Communication to SQL Server Through a Firewall.”

Dynamic Discovery of Named Instances

If you change the default port number that SQL Server listens on, configure your
client to connect to this port. For details, see the Configuring the Client section in
this document.

If you change the port number for your default instance of SQL Server 2000, failure
to modify the client will result in a connection error. If you have multiple SQL Server
instances, the latest version of the MDAC data access stack (2.6) employs dynamic
discovery and uses a User Datagram Protocol (UDP) negotiation (through UDP

38 Microsoft <book title>

port 1434) to locate the named instances. Although this might work in a develop-
ment environment, it is unlikely to work in a live environment because the firewall
will typically block the UDP negotiation traffic.

To circumvent this, always configure your client to connect to the configured desti-
nation port number.

Configuring the Client
You should configure the client to use the TCP/IP network library to connect to
SQL Server, and you should ensure that the client library uses the correct destination
port number.

Using the TCP/IP Network Library

You can configure the client by using the SQL Server Client Network Utility. In some
installations, you might not have this utility installed on the client (for example,
your Web server). In this case, you can do either of the following:
� Specify the network library by using the “Network Library=dbmssocn” name-

value pair supplied through the connection string. The string “dbmssocn” is used
to identify the TCP/IP (sockets) library.

Note: When using the SQL Server .NET Data Provider, the network library setting uses
“dbmssocn” by default.

� Modify the registry on the client machine, to establish TCP/IP as the default
library. For more information about configuring the SQL Server network library,
see HOWTO: Change SQL Server Default Network Library Without Using Client
Network Utility (Q250550).

Specifying a Port

If your instance of SQL Server is configured to listen on a port other than the de-
fault 1433, you can specify the port number to connect to by:
� Using the Client Network Utility.
� Specifying the port number with the “Server” or “Data Source” name-value pair

supplied to the connection string. Use a string with the following format:

"Data Source=ServerName,PortNumber"

Note: ServerName might be an IP address or Domain Name System (DNS) name. For
optimum performance, use an IP address to avoid a DNS lookup.

.NET Data Access Architecture Guide 39

Distributed Transactions
If you have developed serviced components that use COM+ distributed transactions
and the services of the Microsoft Distributed Transaction Coordinator (DTC), you
might also need to configure your firewall to allow DTC traffic to flow between
separate DTC instances, and between the DTC and resource managers such as SQL
Server.

For more information about opening ports for the DTC, see INFO: Configuring
Microsoft Distributed Transaction Coordinator (DTC) to Work Through a Firewall.

Handling BLOBs
Today, many applications need to deal with data formats such as graphic and
sound — or even more elaborate data formats, such as video — in addition to more
conventional character and numeric data. There are many different types of graphic,
sound, and video formats. From a storage perspective, however, they can all be
thought of as lumps of binary data, typically referred to as binary large objects, or
BLOBs.

SQL Server provides the binary, varbinary, and image data types to store BLOBs.
Despite the name, BLOB data can also refer to text-based data. For example, you
might want to store an arbitrarily long notes field that can be associated with a
particular row. SQL Server provides the ntext and text data types for this purpose.

In general, for binary data less than 8 kilobytes (KB), use the varbinary data type.
For binary data exceeding this size, use image. Table 2 highlights the main features
of each data type.

Table 2. Data Type Features

Data type Size Description

binary Ranges from 1 to 8,000 bytes. Storage Fixed-length binary data
size is specified length plus 4 bytes.

varbinary Ranges from 1 to 8,000 bytes. Storage Variable-length binary data
size is actual length of supplied data
plus 4 bytes.

image Variable-length binary data from 0 to 2 Large-size, variable-length binary data
gigabytes (GB).

text Variable-length data from 0 to 2 GB. Character data

ntext Variable-length data from 0 to 2 GB. Unicode character data

40 Microsoft <book title>

Note: Microsoft® SQL Server™ 2000 supports the ability to store small to medium text, ntext,
and image values in a data row. The feature is best used for tables in which the data in text,
ntext, and image columns is usually read or written in one unit and most statements referenc-
ing the table use the text, ntext, and image data. More information can be found in the SQL
Server Books Online under “text in row”.

Where to Store BLOB Data
SQL Server 7.0 and later have improved the performance of working with BLOB
data stored in the database. One of the reasons for this is that the database page size
has increased to 8 KB. As a result, text or image data less than 8 KB no longer needs
to be stored in a separate binary tree structure of pages, but can be stored in a single
row. This means that reading and writing text, ntext, or image data can be as fast as
reading or writing character and binary strings. Beyond 8 KB, a pointer is main-
tained within the row, and the data itself is held in a binary tree structure of separate
data pages — with an inevitable performance impact.

For more information about forcing text, ntext, and image data to be stored in a
single row, see the “Using Text and Image Data” topic in SQL Server Books Online.

A commonly used alternative approach to handling BLOB data is to store the BLOB
data in the file system, and store a pointer (preferably a Uniform Resource Locator
[URL] link) in a database column to reference the appropriate file. For versions
earlier than SQL Server 7.0, storing BLOB data externally to the database in the file
system can improve performance.

However, improved BLOB support in SQL Server 2000, coupled with ADO.NET
support for reading and writing BLOB data, makes storing BLOB data in the data-
base a feasible approach.

Advantages of Storing BLOB Data in the Database
Storing BLOB data in the database offers a number of advantages:
� It is easier to keep the BLOB data synchronized with the remaining items in the

row.
� BLOB data is backed up with the database. Having a single storage system can

ease administration.
� BLOB data can be accessed through XML support in SQL Server 2000, which can

return a base 64 – encoded representation of the data in the XML stream.
� SQL Server Full Text Search (FTS) operations can be performed against columns

that contain fixed or variable-length character (including Unicode) data. You can
also perform FTS operations against formatted text-based data contained within
image fields — for example, Microsoft Word or Microsoft Excel documents.

.NET Data Access Architecture Guide 41

Disadvantages of Storing BLOB Data in the Database
Carefully consider what resources might be better stored on the file system rather
than in a database. Good examples are images that are typically referenced via HTTP
HREF. This is because:
� Retrieving an image from a database incurs significant overhead compared to

using the file system.
� Disk storage on database SANs is typically more expensive than storage on disks

used in Web server farms.

Note: A well thought out metadata strategy can remove the need for resources such as
images, movies, and even Microsoft Office documents to be stored in the database. The
metadata could be indexed and include pointers to resources stored on the file system.

Writing BLOB Data to the Database
The following code shows how to use ADO.NET to write binary data obtained from
a file to an image field in SQL Server.

public void StorePicture(string filename)
{
 // Read the file into a byte array
 using(FileStream fs = new FileStream(filename, FileMode.Open, FileAccess.Read))
 {
 byte[] imageData = new Byte[fs.Length];
 fs.Read(imageData, 0, (int)fs.Length);
 }

 using(SqlConnection conn = new SqlConnection(connectionString))
 {
 SqlCommand cmd = new SqlCommand("StorePicture", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("@filename", filename);
 cmd.Parameters["@filename"].Direction = ParameterDirection.Input;
 cmd.Parameters.Add("@blobdata", SqlDbType.Image);
 cmd.Parameters["@blobdata"].Direction = ParameterDirection.Input;
 // Store the byte array within the image field
 cmd.Parameters["@blobdata"].Value = imageData;
 conn.Open();
 cmd.ExecuteNonQuery();
 }
}

Reading BLOB Data from the Database
When creating a SqlDataReader object through the ExecuteReader method to
read rows that contain BLOB data, use the CommandBehavior.SequentialAccess
enumerated value. Without this enumerated value, the reader pulls data from the

42 Microsoft <book title>

server to the client one row at a time. If the row contains a BLOB column, this might
represent a large amount of memory. By using the enumerated value, you have a
finer degree of control because the BLOB data will be pulled only when referenced
(for example, by means of the GetBytes method, which you can use to control the
number of bytes read). This is illustrated in the following code fragment.

// Assume previously established command and connection
// The command SELECTs the IMAGE column from the table
conn.Open();
using(SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
{
 reader.Read();
 // Get size of image data – pass null as the byte array parameter
 long bytesize = reader.GetBytes(0, 0, null, 0, 0);
 // Allocate byte array to hold image data
 byte[] imageData = new byte[bytesize];
 long bytesread = 0;
 int curpos = 0;
 while (bytesread < bytesize)
 {
 // chunkSize is an arbitrary application defined value
 bytesread += reader.GetBytes(0, curpos, imageData, curpos, chunkSize);
 curpos += chunkSize;
 }
}
// byte array 'imageData' now contains BLOB from database

Note: Using CommandBehavior.SequentialAccess requires you to access column data in a
strict sequential order. For example, if the BLOB data is in column 3, and you also require data
from column 1 and column 2, you must read columns 1 and 2 prior to reading 3.

Performing Database Updates with DataSets
The architecture for performing database updates has changed significantly with the
introduction of ADO.NET. ADO.NET has been designed to better facilitate develop-
ment of multitier applications that scale to large database sizes and large numbers of
clients. This has had some important consequences, in particular:
� ADO.NET applications usually segregate application logic on the client from

business and data integrity computations on the middle and database tiers. In
practical terms, this means that the typical application will have more of a batch
or transactional nature with fewer (but larger) interactions between client appli-
cation and database.

� ADO.NET applications have more control (in comparison to ADO and its prede-
cessors) over exactly how updates are processed.

.NET Data Access Architecture Guide 43

� ADO.NET allows applications to propagate changes by means of stored proce-
dures that are stored in the backend database, instead of directly manipulating a
row of a database table. This is a recommended practice.

Update Usage Patterns
The process of using ADO.NET to update data from a DataSet can be outlined as
follows:
1. Create a DataAdapter object and fill a DataSet object with the results of a data-

base query. The data will be cached locally.
2. Make changes to the local DataSet object. These changes can include updates,

deletions, and insertions to one or more tables in the locally cached DataSet.
3. Initialize the DataAdapter update-related properties. This step configures exactly

how updates, deletions, or insertions will be processed. Since there are several
ways to handle this, recommended approaches are discussed below in “Initializ-
ing DataAdapters for Update.”

4. Invoke the DataAdapter Update method to submit the pending changes. Each of
the changed records of the locally cached DataSet will be processed. (Records
with no changes will be automatically ignored by the Update method.)

5. Handle exceptions thrown by the DataAdapter Update method. Exceptions arise
when the requested changes cannot be made in the database.

(There is one other way to perform updates. You can directly execute a SQL update
query using the ExecuteNonQuery method. This technique is appropriate when you
want to update specific rows programmatically, without using a DataSet object.)

Initializing DataAdapters for Update
In ADO.NET, you must add your own code for submitting database updates to the
DataAdapter object. There are three ways of doing this:
� You can supply your own updating logic.
� You can use the Data Adapter Configuration Wizard to generate the updating

logic.
� You can use the CommandBuilder object to generate the updating logic.

It is recommended that you supply your own updating logic. To save time, you can
use the Data Adapter Configuration Wizard, but if you do, try not to generate the
logic at run time. Do not rely on CommandBuilder objects unless you have to
because your performance will suffer and you cannot control the updating logic the
objects generate. In addition, a CommandBuilder will not help you submit updates
using stored procedures.

44 Microsoft <book title>

You can use CommandBuilder with applications that dynamically generate data
access logic, such as reporting or data extraction tools. Using the CommandBuilder
eliminates the need for these tools to write their own code-generating modules.

Using Stored Procedures
Using stored procedures for updates allows the administrator of your database to
implement more granular security than is available with dynamic SQL, as well as
more sophisticated data integrity checks. For example, the stored procedure might
insert an entry into an audit log as well as perform the requested update. Stored
procedures can provide the best performance as well because of offline query opti-
mization performed within the database on stored procedures. Finally, the insulation
between the database structure and the application that stored procedures provide
allows for easy maintenance.

Because ADO.NET applications that use stored procedures provide many benefits
and are no more difficult to implement than those that make changes directly to the
database, this approach is recommended in nearly every case. The exception to this
is if you must work with multiple back ends or a database, such as Microsoft Access,
that doesn’t support them. In those cases, use query-based updates.

Managing Concurrency
The DataSet object is designed to encourage the use of optimistic concurrency for
long-running activities, such as when you are remoting data and when users are
interacting with data. When submitting updates from a DataSet to the database
server, there are four main approaches to managing optimistic concurrency:
� Including only the primary key columns
� Including all columns in the WHERE clause
� Including unique key columns and the timestamp columns
� Including unique key columns and the modified columns

Note that the last three approaches maintain data integrity; the first does not.

Including Only the Primary Key Columns
This option creates a situation where the last update overrides all previous changes.
The CommandBuilder does not support this option, but the Data Adapter Configu-
ration Wizard does. To use it, go to the Advanced Options tab and clear the Use
Concurrency check box.

This approach is not a recommended practice because it allows users to unknow-
ingly overwrite other users’ changes. It is never advisable to compromise the integ-
rity of another user’s update. (This technique is appropriate only for single-user
databases.)

.NET Data Access Architecture Guide 45

Including All Columns in the WHERE Clause
This option prevents you from overwriting changes made by other users between
the time your code fetches the row and the time your code submits the pending
change in the row. This option is the default behavior of both the Data Adapter
Configuration Wizard and the SQL code generated by the SqlCommandBuilder.

This approach is not a recommended practice for the following reasons:
� If an additional column is added to the table, the query will need to be modified.
� In general, databases do not let you compare two BLOB values because their

large sizes make these comparisons inefficient. (Tools such as the
CommandBuilder and the Data Adapter Configuration Wizard should not
include BLOB columns in the WHERE clause.)

� Comparing all columns within a table to all the columns in an updated row can
create excessive overhead.

Including Unique Key Columns and the Timestamp Columns
With this option, the database updates the timestamp column to a unique value after
each update of a row. (You must provide a timestamp column in your table.) Cur-
rently, neither the CommandBuilder nor the Data Adapter Configuration Wizard
supports this option.

Including Unique Key Columns and the Modified Columns
In general, this option is not recommended because errors may result if your appli-
cation logic relies on out-of-date data fields or even fields that it does not update.
For example, if user A changes an order quantity and user B changes the unit price,
it may be possible for the order total (quantity multiplied by price) to be incorrectly
calculated.

Correctly Updating Null Fields
When fields in a database do not contain data values, it is often convenient to think
of these empty fields as containing a special null value. However, this mental picture
can be the source of programming errors because database standards require special
handling for null values.

The core issue with null fields is that the ordinary SQL = operator will always return
false if one or both of the operands is a null value. The operator IS NULL is the only
correct way to check for the presence of a null field in a SQL query.

If your application uses the technique described above to manage concurrency by
specifying a WHERE clause, you must include explicit IS NULL expressions wher-
ever it is possible that a field could be null. For example, the following query will
always fail if OldLastName is null:

SET LastName = @NewLastName WHERE StudentID = @StudentID AND
 LastName = @OldLastName

46 Microsoft <book title>

The query should be rewritten as:

SET LastName = @NewLastName WHERE (StudentID = @StudentID) AND
 ((LastName = @OldLastName) OR
 (OldLastName IS NULL AND LastName IS NULL))

A good way to understand how to write the kind of update logic shown above is to
read the output generated by the CommandBuilder tool.

More Information
A complete treatment of database updates can be found in David Sceppa’s Microsoft
ADO.NET (Microsoft Press, 2002), chapters 11 and 12.

Using Strongly Typed DataSet Objects
Strongly typed DataSet objects present database tables and columns as objects and
properties. Access is performed by name, not by indexing into a collection. This
means you can recognize the difference between strongly typed and untyped
DataSet objects in the way you access the fields:

string n1 = myDataSet.Tables["Students"].Rows[0]["StudentName"]; // untyped
string n2 = myDataSet.Students[0].StudentName; // strongly typed

There are several benefits to using strongly typed DataSet objects:
� The code required to access fields is more readable and compact.
� The Intellisense capability within the Visual Studio .NET code editor can auto-

matically complete lines as you type.
� The compiler can catch strongly typed DataSet type mismatch errors. It is better

to detect type errors at compile time than at run time.

When to Use Strongly Typed DataSets
Strongly typed DataSets are useful because they make application development
easier and less error-prone. This is especially true for the client side of a multitiered
application where the focus is on graphical user interfaces and data validation that
require many field access operations.

However, strongly typed DataSets can be cumbersome if the database structure
changes, for example when field and table names are modified. In this case, the
typed DataSet class has to be regenerated and all dependent classes must be
modified.

It is possible to use both strongly typed and untyped approaches in the same appli-
cation. For example, some developers use strongly typed DataSets on the client side

.NET Data Access Architecture Guide 47

and untyped records on the server. The .Merge method of the strongly typed
DataSet can be used to import data from an untyped DataSet.

Generating DataSet Classes
Both the .NET Framework SDK and Visual Studio.NET provide utilities for helping
you generate the necessary DataSet subclasses. The .NET Framework SDK involves
using a command-line tool and writing code. The Visual Studio .NET method,
obviously, relies on the Visual Studio .NET development environment and doesn’t
require you to open a Command window.

Regardless of how the DataSet class is generated, the new class must also be de-
ployed to all tiers that reference that typed DataSet. (This is not a typical scenario,
but it is important to consider if passing a typed DataSet across tiers by using
remoting.)

Using the .NET Framework Utility
The .NET Framework SDK includes a command-line utility called the XML Schema
Definition Tool that helps you generate class files based on XML schema (.xsd) files.
Use this utility in conjunction with the DataSet object’s WriteXmlSchema method to
translate your untyped DataSet into a strongly typed DataSet.

The following command illustrates how to generate a class file from an XML schema
file. Open a Command window and type:

C:\>xsd MyNewClass.xsd /d

The first parameter in the command is the path to the XML schema file. The second
parameter indicates that the class you want to create is derived from the DataSet
class. By default, the tool generates Visual C# .NET class files, but it can also gener-
ate Visual Basic .NET class files by adding the appropriate options. To list the tool’s
available options, type:

xsd /?

Once you’ve created your new class file, add it to your project. You can now create
an instance of your strongly typed DataSet class, as shown in the following Visual
C# .NET code snippet:

MyNewClass ds = new MyNewClass();

48 Microsoft <book title>

Using Visual Studio .NET
To generate a strongly typed DataSet in Visual Studio .NET, right-click in the form
designer window, and then click Generate Dataset. This creates an .xsd (XML
Schema Definition) file, as well as a class file, and then adds them to your project.
Be sure that one or more DataAdapters have been added to your Windows form
before doing this. Note that the class file is hidden. To see it, click the Show All Files
button located in the toolbar of the Solution Explorer window. The class file is
associated with the .xsd file.

To add relations to a strongly typed DataSet , open the XML Schema Designer by
double-clicking the schema file in the Solution Explorer window, and then right-
click the table to which you want to add a constraint. On the shortcut menu, click
Add New Relation.

An alternative method for generating a strongly typed DataSet in Visual Studio
.NET is to right-click the project in the Project Explorer, choose Add Files, and then
select dataset. A new .xsd file will be created. From there you can use Server Ex-
plorer to connect to a database and drag table(s) onto the xsd file.

Working with Null Data Fields
Here are a few tips to help you correctly use null field values in the .NET Data
Architecture:
� Always set the value of a null field using the System.DBNull class. Do not use

the null value provided by C# or Visual Basic .NET. For example:

rowStudents["Nickname"] = DBNull.Value // correct!

� Strongly typed DataSets contain two additional methods per DataRow — one to
check if a column contains a null value, and another to set the column value to
null. These are shown in the following code fragment:

If (tds.rowStudent[0].IsPhoneNoNull()) {….}
tds.rowStudent[0].SetPhoneNoNull()

� Always use the IsNull method of the DataRow class (or the strongly typed
equivalent given in the previous bullet) to test for null values from a database.
This method is the only supported way to test for null database values.

� If it is possible that a data field contains a null value, be sure to test for it (with
the IsNull method) before using the value in a context that expects a non-null
value. A typical example of this is Integer-valued data fields that may be null.
Note that the .NET run time Integer datatype does not include the null value.
Here is an example:

int i = rowStudent["ZipCode"]; // throws exception if null!

.NET Data Access Architecture Guide 49

� Use the nullValue annotation of a strongly typed DataSet .xsd file to configure
how null values from a database are mapped. By default, an exception is thrown;
however, for more fine-grained control, you can configure the class to replace the
null value with a specified value, such as String.Empty.

Transactions
Virtually all commercially oriented applications that update data sources require
transaction support. Transactions are used to ensure the integrity of a system’s state
contained within one or more data sources by providing the four basic guarantees of
the well known ACID acronym: atomicity, consistency, isolation, and durability.

For example, consider a Web-based retail application that processes purchase orders.
Each order requires three distinct operations that involve three database updates:
� The inventory level must be reduced by the quantity ordered.
� The customer’s credit level must be debited by the purchase amount.
� A new order must be added to the orders database.

It is essential that these three distinct operations be performed as a unit and in
an atomic fashion. They must all succeed, or none of them must succeed — any
alternative would compromise data integrity. Transactions provide this and other
guarantees.

For further background reading about transaction processing fundamentals, see
http://msdn.microsoft.com/library/en-us/cpguidnf/html
/cpcontransactionprocessingfundamentals.asp.

There are a number of approaches that you can adopt to incorporate transaction
management into your data access code. Each approach fits into one of two basic
programming models:
� Manual transactions. You write code that uses the transaction support features of

either ADO.NET or Transact-SQL directly in your component code or stored
procedures, respectively.

� Automatic (COM+) transactions. You add declarative attributes to your .NET
classes that specify the transactional requirements of your objects at run time.
This model allows you to easily configure multiple components to perform work
within the same transaction.

Both techniques can be used to perform local transactions (that is, transactions
performed against a single resource manager such as SQL Server 2000) or distrib-
uted transactions (that is, transactions performed against multiple resource manag-
ers located on remote computers), although the automatic transaction model greatly
simplifies distributed transaction processing.

50 Microsoft <book title>

You might be tempted to use automatic (COM+) transactions to benefit from an
easier programming model. This benefit is particularly apparent in systems where
you have many components that perform database updates. In many scenarios,
however, you should avoid the additional overhead and performance reduction that
result from this style of transaction model.

This section provides guidance to help you choose the most appropriate model
based on your particular application scenario.

Choosing a Transaction Model
Prior to choosing a transaction model, you should consider whether or not you
require transactions at all. Transactions are the single most expensive resource
consumed by server applications, and they reduce scalability when used unnecessar-
ily. Consider the following guidelines governing the use of transactions:
� Perform transactions only when you need to acquire locks across a set of opera-

tions and need to enforce ACID rules.
� Keep transactions as short as possible to minimize the amount of time that you

hold database locks.
� Never place a client in control of transaction lifetime.
� Don’t use a transaction for an individual SQL statement. SQL Server automati-

cally runs each statement as an individual transaction.

Automatic vs. Manual Transactions
Although the programming model is somewhat simplified for automatic transac-
tions, particularly when multiple components are performing database updates,
manual local transactions are always significantly faster because they do not require
interaction with the Microsoft DTC. This is true (although the performance degrada-
tion is reduced) even if you are using automatic transactions against a single local
resource manager (such as SQL Server), because a manual, local transaction avoids
any unnecessary interprocess communication (IPC) with the DTC.

Use manual transactions when:
� You are performing a transaction against a single database.

Use automatic transactions when:
� You require a single transaction to span multiple remote databases.
� You require a single transaction to encompass multiple resource managers — for

example, a database and a Windows 2000 Message Queuing (formerly known as
MSMQ) resource manager.

Note: Avoid mixing your transaction models. Use one or the other.

.NET Data Access Architecture Guide 51

In application scenarios in which performance is deemed sufficient, it is reasonable
to opt for automatic transactions (even against a single database) to simplify the
programming model. Automatic transactions make it easy for multiple components
to perform operations that are part of the same transaction.

Using Manual Transactions
With manual transactions, you write code that uses the transaction support features
of either ADO.NET or Transact-SQL directly in your component code or stored
procedures, respectively. In most cases, you should opt for controlling transactions
in your stored procedures because this approach offers superior encapsulation, and
from a performance perspective is comparable to performing transactions with
ADO.NET code.

Performing Manual Transactions with ADO.NET
ADO.NET supports a transaction object that you can use to begin a new transaction
and then explicitly control whether it should be committed or rolled back. The
transaction object is associated with a single database connection and is obtained by
the BeginTransaction method of the connection object. Calling this method does not
implicitly mean that subsequent commands are issued in the context of this transac-
tion. You must explicitly associate each command with the transaction, by setting
the Transaction property of the command. You can associate multiple command
objects with the transaction object, thereby grouping multiple operations against the
single database in a single transaction.

For an example of using ADO.NET transaction code, see How To Code ADO.NET
Manual Transactions in the appendix.

More Information
� The default isolation level for an ADO.NET manual transaction is Read Commit-

ted, which means that the database holds shared locks while data is being read,
but data can be changed before the end of the transaction. This can potentially
result in non-repeatable reads, or phantom data. You can change the isolation
level by setting the transaction object’s IsolationLevel property to one of the
enumerated values defined by the IsolationLevel enumerated type.

� You must give careful consideration to choosing an appropriate isolation level for
your transactions. The tradeoff is one of data consistency versus performance.
The highest isolation level (Serialized) offers absolute data consistency, but at the
price of overall system throughput. Lower isolation levels can make an applica-
tion more scalable, but at the same time, increase the possibility of errors result-
ing from data inconsistency. For systems that read data most of the time, and
write data rarely, lower isolation levels might be appropriate.

� For valuable information about choosing an appropriate transaction isolation
level, see the Microsoft Press® book Inside SQL Server 2000, by Kalen Delaney.

52 Microsoft <book title>

Performing Manual Transactions with Stored Procedures
You can also control manual transactions directly by using Transact-SQL statements
in your stored procedures. For example, you could perform transactional operations
by using a single stored procedure that employs Transact-SQL transaction state-
ments such as BEGIN TRANSACTION, END TRANSACTION, and ROLLBACK
TRANSACTION.

More Information
� If required, you can control the transaction isolation level by using the SET

TRANSACTION ISOLATION LEVEL statement in the stored procedure. Read
Committed is the SQL Server default. For more information about SQL Server
isolation levels, see Isolation Levels within the “Accessing and Changing Relation
Data” section of SQL Server Books Online.

� For a code sample that shows how to perform transactional updates using Trans-
act-SQL transaction statements, see How To Perform Transactions With Transact-
SQL in the appendix.

Using Automatic Transactions
Automatic transactions simplify the programming model because they do not
require that you explicitly begin a new transaction or explicitly commit or abort the
transaction. However, the most significant advantage of automatic transactions is
that they work in conjunction with the DTC, which allows a single transaction to
span multiple distributed data sources. In a large-scale distributed application, this
advantage can be significant. Although it is possible to manually control distributed
transactions by programming the DTC directly, automated transactions drastically
simplify the task and are designed for component-based systems. For example, it is
easy to declaratively configure multiple components to perform work that com-
prises a single transaction.

Automatic transactions rely on the distributed transaction support features provided
by COM+, and as a result, only serviced components (that is, components that are
derived from the ServicedComponent class) can use automatic transactions.

To configure a class for automatic transactions:
� Derive the class from the ServicedComponent class located within the

System.EnterpriseServices namespace.
� Define the transaction requirements of the class by using the Transaction at-

tribute. The value supplied from the TransactionOption enumerated type deter-
mines how the class will be configured in the COM+ catalog. Other properties
that can be established with this attribute include the transaction isolation level
and time-out.

.NET Data Access Architecture Guide 53

� To avoid explicitly having to vote in the transaction outcome, you can annotate
methods with the AutoComplete attribute. If these methods throw an exception,
the transaction will be aborted automatically. Note that you can still directly vote
toward transaction outcome if required. For further details, see the Determining
Transaction Outcome section later in this document.

More Information
� For more information about COM+ automatic transactions, search for “Auto-

matic Transactions Through COM+” within the Platform SDK documentation.
� For an example of a transactional .NET class, see How To Code a Transactional

.NET Class in the appendix.

Configuring Transaction Isolation Levels
The transaction isolation level for COM+ version 1.0 — that is, COM+ running on
Windows 2000 — is Serialized. Although this offers the highest degree of isolation,
such protection comes at the cost of performance. The overall throughput of your
system is reduced because the resource managers (typically databases) involved
must hold both read and write locks for the duration of the transaction. During this
time, all other transactions are blocked, which can have a significant impact on your
application’s ability to scale.

COM+ version 1.5, which ships with Microsoft Windows .NET, allows the transac-
tion isolation level to be configured in the COM+ catalog on a per component basis.
The setting associated with the root component in the transaction determines the
isolation level for the transaction. In addition, internal subcomponents that are part
of the same transaction stream must not have a transaction level higher than that
defined by the root component. If they do, an error will result when the subcompo-
nent is instantiated.

For .NET managed classes, the Transaction attribute supports the public Isolation
property. You can use this property to declaratively specify a particular isolation
level, as illustrated in the following code.

[Transaction(TransactionOption.Supported,
Isolation=TransactionIsolationLevel.ReadCommitted)]
public class Account : ServicedComponent
{
 . . .
}

More Information
� For more information about configurable transaction isolation levels and other

Windows .NET COM+ enhancements, see the MSDN Magazine article, “Win-
dows XP: Make Your Components More Robust with COM+ 1.5 Innovations” at
http://msdn.microsoft.com/msdnmag/issues/01/08/ComXP/default.aspx.

54 Microsoft <book title>

Determining Transaction Outcome
The outcome of an automatic transaction is governed by the state of the transaction
abort flag, together with the consistent flags, in the context of all transactional
components in a single transaction stream. Transaction outcome is determined at the
point that the root component in the transaction stream is deactivated (and control is
returned to the caller). This is illustrated in Figure 5, which shows a classic bank
funds transfer transaction.

Transaction Stream

MS
DTC

Consistent Flag

Abort Flag

Done Flag

Consistent Flag

Done Flag

Debit

Consistent Flag

Done Flag

Credit

Client

Transfer

Context

Figure 1.5
Transaction stream and context

.NET Data Access Architecture Guide 55

The outcome of the transaction is determined when the root object (in this example,
the Transfer object) is deactivated, and the client’s method call returns. If any of the
consistent flags within any context are set to false, or if the transaction abort flag is
set to true, the underlying physical DTC transaction is aborted.

You can control transaction outcome from a .NET object in one of two ways:
� You can annotate methods with the AutoComplete attribute, and let .NET auto-

matically place your vote governing the outcome of the transaction. With this
attribute, if the method throws an exception, the consistent flag is automatically
set to false (which ultimately causes the transaction to abort). If the method
returns without throwing an exception, the consistent flag is set to true, which
indicates that the component is happy for the transaction to commit. This is not
guaranteed because it depends on the votes of other objects in the same transac-
tion stream.

� You can call the static SetComplete or SetAbort method of the ContextUtil class,
which sets the consistent flag to true or false, respectively.

SQL Server errors with a severity greater than 10 result in the managed data pro-
vider throwing exceptions of type SqlException. If your method catches and
handles the exception, be sure to either manually vote to abort the transaction, or for
methods flagged as [AutoComplete], ensure that the exception is propagated to the
caller.

[AutoComplete] Methods

For methods marked with the AutoComplete attribute, do either of the following:
� Propagate the SqlException back up the call stack.
� Wrap the SqlException in an outer exception and propagate that to the caller. You

might want to wrap the exception in an exception type that is more meaningful to
the caller.

Failure to propagate the exception will result in the object not voting to abort the
transaction, despite the database error. This means that other successful operations
made by other objects sharing the same transaction stream might be committed.

The following code catches a SqlException and then propagates it directly to the
caller. The transaction will ultimately abort because this object’s consistent flag will
automatically be set to false when it is deactivated.

[AutoComplete]
void SomeMethod()
{
 try
 {
 // Open the connection, and perform database operation
 . . .
 }

56 Microsoft <book title>

 catch (SqlException sqlex)
 {
 LogException(sqlex); // Log the exception details
 throw; // Rethrow the exception, causing the consistent
 // flag to be set to false.
 }
 finally
 {
 // Close the database connection
 . . .
 }
}

Non-[AutoComplete] Methods

For methods not marked with the AutoComplete attribute, you must:
� Call ContextUtil.SetAbort within the catch block to vote to abort the transaction.

This sets the consistent flag to false.
� Call ContextUtil.SetComplete if an exception doesn’t occur to vote to commit the

transaction. This sets the consistent flag to true (its default state).

The following code illustrates this approach.

void SomeOtherMethod()
{
 try
 {
 // Open the connection, and perform database operation
 . . .
 ContextUtil.SetComplete(); // Manually vote to commit the transaction
 }
 catch (SqlException sqlex)
 {
 LogException(sqlex); // Log the exception details
 ContextUtil.SetAbort(); // Manually vote to abort the transaction
 // Exception is handled at this point and is not propagated to the caller
 }
 finally
 {
 // Close the database connection
 . . .
 }
}

Note: If you have multiple catch blocks, it is easier to call ContextUtil.SetAbort once at the
start of a method, and call ContextUtil.SetComplete at the end of the try block. In this way,
you do not need to repeat the call to ContextUtil.SetAbort within every catch block. The
setting of the consistent flag determined by these methods has significance only when the
method returns.

.NET Data Access Architecture Guide 57

You must always propagate exceptions (or wrapped exceptions) back up the call
stack because this makes the calling code aware that the transaction will fail. This
allows the calling code to make optimizations. For example, in a bank funds transfer
scenario, the transfer component could decide not to perform the credit operation if
the debit operation has already failed.

If you set the consistent flag to false and then return without throwing an exception,
the calling code has no way of knowing that the transaction is bound to fail. Al-
though you could return a Boolean value or set a Boolean output parameter, you
should be consistent and throw an exception to indicate an error condition. This
leads to cleaner and more consistent code with a standard approach to error
handling.

Data Paging
Paging through data is a common requirement in distributed applications. For
example, the user might be presented with a list of books where it would be prohibi-
tive to display the entire list at once. The user will want to perform familiar activities
on the data, such as viewing the next or previous page of data or jumping to the
beginning or end of the list.

This section discusses options for implementing this functionality, and the effect of
each option on scalability and performance.

Comparing the Options
The options for data paging are:
� Using the Fill method of the SqlDataAdapter to fill a DataSet with a range of

results from a query
� Using ADO through COM interoperability and use a server-side cursor
� Using stored procedures to implement data paging manually

The best option for paging your data is dependent on the factors listed below:
� Scalability requirements
� Performance requirements
� Network bandwidth
� Database server memory and power
� Middle-tier server memory and power
� Number of rows returned by a query you want to page
� Size of your data pages

Performance tests have shown that the manual approach using stored procedures
offers the best performance across a wide range of stress levels. However, as the

58 Microsoft <book title>

manual approach performs its work on the server, server stress levels can become a
significant issue if a large proportion of your site’s functionality relies upon data
paging functionality. To ensure that this approach suits your particular environment,
you should test all options against your specific requirements.

The various options are discussed below.

Using the Fill Method of SqlDataAdapter
As previously discussed, the SqlDataAdapter is used to fill a DataSet with data
from a database. One of the overloaded Fill methods (shown in the following code)
takes two integer index values.

public int Fill(
 DataSet dataSet,
 int startRecord,
 int maxRecords,
 string srcTable
);

The startRecord value indicates the zero-based index of the start record. The
maxRecords value indicates the number of records, starting from startRecord, to
copy into the new DataSet.

Internally, the SqlDataAdapter uses a SqlDataReader to execute the query and
return the results. The SqlDataAdapter reads the results and creates a DataSet
based on the data read from the SqlDataReader. The SqlDataAdapter copies all of
the results through startRecord and maxRecords into a newly generated DataSet
and discards the results that it doesn’t need. This means that a lot of unnecessary
data could potentially be pulled across the network to the data access client, which
is the primary drawback to this approach.

For example, if you have 1,000 records and want records 900 through 950, the first
899 records are still pulled across the network and discarded on the client side. This
overhead would probably be minimal for small result sets, but could be significant
when you page through larger sets of data.

Using ADO
Another option for implementing paging is to use COM-based ADO to do the
paging. The primary motivation behind this option is to gain access to server-side
cursors, which are exposed through the ADO Recordset object. You can set the
Recordset cursor location to adUseServer. If your OLE DB provider supports it
(SQLOLEDB does), this will result in the use of a server-side cursor. You can then
use this cursor to navigate to the starting record directly without having to pull all
of the records across the network to the data access client code.

.NET Data Access Architecture Guide 59

There are two primary drawbacks to this approach:
� In most cases, you will want to translate the records returned in the Recordset

object into a DataSet for use in your client managed code. Although
OleDbDataAdapter does overload the Fill method to take an ADO Recordset
object and translate that into a DataSet, there is no facility to start and end with a
particular record. The only realistic option is to move to the start record in the
Recordset object, loop through each record, and manually copy the data to a new
manually generated DataSet. It is possible that doing this, particularly through
the overhead of COM Interop calls, will more than negate the benefits of not
pulling extra data across the network, especially for small DataSet(s).

� During the time it takes to pull the data that you want from the server, you hold
open a connection and a server-side cursor. Cursors are typically an expensive
resource to open and maintain on a database server. Although this option might
increase your performance, it is also likely to diminish your scalability by con-
suming valuable resources on the server for extended periods of time.

Using a Manual Implementation
The final option discussed in this section for paging through your data is to manu-
ally implement paging functionality for your application through the use of stored
procedures. For tables that contain a unique key, you can implement the stored
procedure relatively easily. For tables without a unique key (and you shouldn’t have
many of those), the process is more complicated.

Paging Against a Table with a Unique Key
If your table contains a unique key, you can use the key in a WHERE clause to create
a result set starting from a specific row. This, coupled with the SET ROWCOUNT
statement or the SQL Server TOP statement used to restrict the size of the result set,
provides an effective paging mechanism. This approach is illustrated in the follow-
ing stored procedure code:

CREATE PROCEDURE GetProductsPaged
@lastProductID int,
@pageSize int
AS
SET ROWCOUNT @pageSize
SELECT *
FROM Products
WHERE [standard search criteria]
AND ProductID > @lastProductID
ORDER BY [Criteria that leaves ProductID monotonically increasing]
GO

The caller of this stored procedure simply maintains the lastProductID value and
increments or decrements it by the chosen page size between successive calls.

60 Microsoft <book title>

Paging Against a Table Without a Unique Key
If the table through which you want to page doesn’t have a unique key, consider
adding one — for example, by using an identity column. This will enable you to
implement the paging solution discussed previously.

It is still possible to implement an effective paging solution for a table with no
unique key, as long as you can generate uniqueness by combining two or more other
fields that are part of the result set.

For example, consider the following table:

Col1 Col2 Col3 Other columns…

A 1 W …

A 1 X ….

A 1 Y ….

A 1 Z ….

A 2 W ….

A 2 X ….

B 1 W …

B 1 X ….

With this table, it is possible to generate uniqueness by combining Col1, Col2, and
Col3. As a result, you can implement a paging mechanism by using the approach
illustrated in the following stored procedure.

CREATE PROCEDURE RetrieveDataPaged
@lastKey char(40),
@pageSize int
AS
SET ROWCOUNT @pageSize
SELECT
Col1, Col2, Col3, Col4, Col1+Col2+Col3 As KeyField
FROM SampleTable
WHERE [Standard search criteria]
AND Col1+Col2+Col3 > @lastKey
ORDER BY Col1 ASC, Col2 ASC, Col3 ASC
GO

The client maintains the last value of the KeyField column returned by the stored
procedure and plugs it back in to the stored procedure to control paging through the
table.

.NET Data Access Architecture Guide 61

Although the manual implementation increases the strain placed on the database
server, it avoids passing unnecessary data over the network. Performance tests have
shown this approach to work well across a range of stress levels. However, depend-
ing on how much of the work of your site involves data paging functionality, per-
forming manual paging on the server might impact the scalability of your application.
You should run performance tests in your own environment to find the optimum
approach for you specific application scenario.

62 Microsoft <book title>

Appendix

How to Enable Object Construction for a .NET Class
You can enable a .NET managed class for object construction by using Enterprise
(COM+) Services).

� To enable a .NET managed class
1. Derive your class from the ServicedComponent class located in the

System.EnterpriseServices namespace.

using System.EnterpriseServices;
public class DataAccessComponent : ServicedComponent

2. Decorate your class with the ConstructionEnabled attribute, and optionally
specify a default construction string. This default value is held in the COM+
catalog. Administrators can use the Component Services Microsoft Management
Console (MMC) snap-in to maintain the value.

[ConstructionEnabled(Default="default DSN")]
public class DataAccessComponent : ServicedComponent

3. Provide an overridden implementation of the virtual Construct method. This
method is called after the object’s language-specific constructor. The construction
string maintained in the COM+ catalog is supplied as the single argument to this
method.

public override void Construct(string constructString)
{
 // Construct method is called next after constructor.
 // The configured DSN is supplied as the single argument
}

4. Provide a strong name for the assembly by signing it through the AssemblyKey
file or AssemblyKeyName attribute. Any assembly registered with COM+
services must have a strong name. For more information about strong-named
assemblies, see http://msdn.microsoft.com/library/en-us/cpguidnf/html
/cpconworkingwithstrongly-namedassemblies.asp.

[assembly: AssemblyKeyFile("DataServices.snk")]

5. To support dynamic (lazy) registration, use the assembly-level attributes
ApplicationName and ApplicationActivation to specify the name of the COM+
application used to hold assembly components and the application’s activation
type, respectively. For more information about assembly registration, see http://
msdn.microsoft.com/library/en-us/cpguidnf/html
/cpconregisteringservicedcomponents.asp.

.NET Data Access Architecture Guide 63

// the ApplicationName attribute specifies the name of the
// COM+ Application which will hold assembly components
[assembly : ApplicationName("DataServices")]

// the ApplicationActivation.ActivationOption attribute specifies
// where assembly components are loaded on activation
// Library : components run in the creator's process
// Server : components run in a system process, dllhost.exe
[assembly: ApplicationActivation(ActivationOption.Library)]

The following code fragment shows a serviced component called
DataAccessComponent, which uses COM+ construction strings to obtain a database
connection string.

using System;
using System.EnterpriseServices;

// the ApplicationName attribute specifies the name of the
// COM+ Application which will hold assembly components
[assembly : ApplicationName("DataServices")]

// the ApplicationActivation.ActivationOption attribute specifies
// where assembly components are loaded on activation
// Library : components run in the creator's process
// Server : components run in a system process, dllhost.exe
[assembly: ApplicationActivation(ActivationOption.Library)]

// Sign the assembly. The snk key file is created using the
// sn.exe utility
[assembly: AssemblyKeyFile("DataServices.snk")]

[ConstructionEnabled(Default="Default DSN")]
public class DataAccessComponent : ServicedComponent
{
 private string connectionString;
 public DataAccessComponent()
 {
 // constructor is called on instance creation
 }
 public override void Construct(string constructString)
 {
 // Construct method is called next after constructor.
 // The configured DSN is supplied as the single argument
 this.connectionString = constructString;
 }
}

64 Microsoft <book title>

How to Use a SqlDataAdapter To Retrieve Multiple Rows
The following code illustrates how to use a SqlDataAdapter object to issue a com-
mand that generates a DataSet or DataTable. It retrieves a set of product categories
from the SQL Server Northwind database.

using System.Data;
using System.Data.SqlClient;

public DataTable RetrieveRowsWithDataTable()
{
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand("DATRetrieveProducts", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 SqlDataAdapter adapter = new SqlDataAdapter(cmd);
 DataTable dataTable = new DataTable("Products");
 adapter .Fill(dataTable);
 return dataTable;
 }
}

� To use a SqlAdapter to generate a DataSet or DataTable
1. Create a SqlCommand object to invoke the stored procedure and associate this

with a SqlConnection object (shown) or connection string (not shown).
2. Create a new SqlDataAdapter object and associate it with the SqlCommand

object.
3. Create a DataTable (or optionally, a DataSet) object. Use a constructor argument

to name the DataTable.
4. Call the Fill method of the SqlDataAdapter object to populate either the DataSet

or DataTable with the retrieved rows.

How to Use a SqlDataReader to Retrieve Multiple Rows
The SqlDataReader approach to retrieve multiple rows is illustrated in the follow-
ing code fragment.

using System.IO;
using System.Data;
using System.Data.SqlClient;

public SqlDataReader RetrieveRowsWithDataReader()
{
 SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind");
 SqlCommand cmd = new SqlCommand("DATRetrieveProducts", conn);
 cmd.CommandType = CommandType.StoredProcedure;

.NET Data Access Architecture Guide 65

 try
 {
 conn.Open();
 // Generate the reader. CommandBehavior.CloseConnection causes the
 // the connection to be closed when the reader object is closed
 return(cmd.ExecuteReader(CommandBehavior.CloseConnection));
 }
 catch
 {
 conn.Close();
 throw;
 }
}

// Display the product list using the console
private void DisplayProducts()
{
 SqlDataReader reader = RetrieveRowsWithDataReader();
 try
 {
 while (reader.Read())
 {
 Console.WriteLine("{0} {1} {2}",
 reader.GetInt32(0).ToString(),
 reader.GetString(1));
 }
 }
 finally
 {
 reader.Close(); // Also closes the connection due to the
 // CommandBehavior enum used when generating the reader
 }
}

� To retrieve rows with a SqlDataReader
1. Create a SqlCommand object used to execute the stored procedure and associate

it with a SqlConnection object.
2. Open the connection.
3. Generate a SqlDataReader object by calling the ExecuteReader method of a

SqlCommand object.
4. To read the data from the stream, call the Read method of the SqlDataReader

object to retrieve rows and use the typed accessor methods (such as the GetInt32
and GetString methods) to retrieve the column values.

5. When you finish with the reader, call its Close method.

66 Microsoft <book title>

How to Use an XmlReader to Retrieve Multiple Rows
You can use the SqlCommand object to generate an XmlReader object, which
provides forward-only, stream-based access to XML data. The command (usually
a stored procedure) must generate an XML-based result set, which for SQL Server
2000 usually consists of a SELECT statement with a valid FOR XML clause. The
following code fragment illustrates this approach:

public void RetrieveAndDisplayRowsWithXmlReader()
{
 using(SqlConnection conn = new SqlConnection(connectionString))
 {;
 SqlCommand cmd = new SqlCommand("DATRetrieveProductsXML", conn);
 cmd.CommandType = CommandType.StoredProcedure;
try
 {
 conn.Open();
 XmlTextReader xreader = (XmlTextReader)cmd.ExecuteXmlReader();
 while (xreader.Read())
 {
 if (xreader.Name == "PRODUCTS")
 {
 string strOutput = xreader.GetAttribute("ProductID");
 strOutput += " ";
 strOutput += xreader.GetAttribute("ProductName");
 Console.WriteLine(strOutput);
 }
 }
 xreader.Close(); // XmlTextReader does not support IDisposable so it can't be
 // used within a using keyword
 }
}

The preceding code uses the following stored procedure:

CREATE PROCEDURE DATRetrieveProductsXML
AS
SELECT * FROM PRODUCTS
FOR XML AUTO
GO

� To retrieve XML data with an XmlReader
1. Create a SqlCommand object to invoke a stored procedure that generates an

XML result set (for example, using the FOR XML clause on the SELECT state-
ment). Associate the SqlCommand object with a connection.

2. Call the ExecuteXmlReader method of the SqlCommand object and assign the
results to a forward-only XmlTextReader object. This is the fastest type of

.NET Data Access Architecture Guide 67

XmlReader object that you should use when you do not require any XML-based
validation of the returned data.

3. Read the data by using the Read method of the XmlTextReader object.

How to Use Stored Procedure Output Parameters
to Retrieve a Single Row
You can call a stored procedure that returns the retrieved data items within a single
row by means of named output parameters. The following code fragment uses a
stored procedure to retrieve the product name and unit price for a specific product
contained in the Products table in the Northwind database.

void GetProductDetails(int ProductID,
 out string ProductName, out decimal UnitPrice)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=Northwind"))
 {
 // Set up the command object used to execute the stored proc
 SqlCommand cmd = new SqlCommand("DATGetProductDetailsSPOutput", conn)
 cmd.CommandType = CommandType.StoredProcedure;
 // Establish stored proc parameters.
 // @ProductID int INPUT
 // @ProductName nvarchar(40) OUTPUT
 // @UnitPrice money OUTPUT

 // Must explicitly set the direction of output parameters
 SqlParameter paramProdID =
 cmd.Parameters.Add("@ProductID", ProductID);
 paramProdID.Direction = ParameterDirection.Input;
 SqlParameter paramProdName =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramProdName.Direction = ParameterDirection.Output;
 SqlParameter paramUnitPrice =
 cmd.Parameters.Add("@UnitPrice", SqlDbType.Money);
 paramUnitPrice.Direction = ParameterDirection.Output;

 conn.Open();
 // Use ExecuteNonQuery to run the command.
 // Although no rows are returned any mapped output parameters
 // (and potentially return values) are populated
 cmd.ExecuteNonQuery();
 // Return output parameters from stored proc
 ProductName = paramProdName.Value.ToString();
 UnitPrice = (decimal)paramUnitPrice.Value;
 }
}

68 Microsoft <book title>

� To retrieve a single row with stored procedure output parameters
1. Create a SqlCommand object and associate it with a SqlConnection object.
2. Set up the stored procedure parameters by calling the Add method of the

SqlCommand’s Parameters collection. By default, parameters are assumed to
be input parameters, so you must explicitly set the direction of any output
parameters.

Note: It is good practice to explicitly set the direction of all parameters, including input
parameters.

3. Open the connection.
4. Call the ExecuteNonQuery method of the SqlCommand object. This populates

the output parameters (and potentially a return value).
5. Retrieve the output parameters from the appropriate SqlParameter objects by

using the Value property.
6. Close the connection.

The preceding code fragment invokes the following stored procedure.

CREATE PROCEDURE DATGetProductDetailsSPOutput
@ProductID int,
@ProductName nvarchar(40) OUTPUT,
@UnitPrice money OUTPUT
AS
SELECT @ProductName = ProductName,
 @UnitPrice = UnitPrice
FROM Products
WHERE ProductID = @ProductID
GO

How to Use a SqlDataReader to Retrieve a Single Row
You can use a SqlDataReader object to retrieve a single row, and specifically the
desired column values from the returned data stream. This is illustrated in the
following code fragment.

void GetProductDetailsUsingReader(int ProductID,
 out string ProductName, out decimal UnitPrice)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=Northwind"))
 {
 // Set up the command object used to execute the stored proc
 SqlCommand cmd = new SqlCommand("DATGetProductDetailsReader", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 // Establish stored proc parameters.
 // @ProductID int INPUT

.NET Data Access Architecture Guide 69

 SqlParameter paramProdID = cmd.Parameters.Add("@ProductID", ProductID);
 paramProdID.Direction = ParameterDirection.Input;
 conn.Open();
 using(SqlDataReader reader = cmd.ExecuteReader())
 {
 if(reader.Read()) // Advance to the one and only row
 {
 // Return output parameters from returned data stream
 ProductName = reader.GetString(0);
 UnitPrice = reader.GetDecimal(1);
 }
 }
 }
}

� To return a single row with a SqlDataReader object
1. Establish the SqlCommand object.
2. Open the connection.
3. Call the ExecuteReader method of the SqlDataReader object.
4. Retrieve output parameters through the typed accessor methods of the

SqlDataReader object — in this case, GetString and GetDecimal.

The preceding code fragment invokes the following stored procedure.

CREATE PROCEDURE DATGetProductDetailsReader
@ProductID int
AS
SELECT ProductName, UnitPrice FROM Products
WHERE ProductID = @ProductID
GO

How to Use ExecuteScalar to Retrieve a Single Item
The ExecuteScalar method is designed for queries that return only a single value.
In the event of the query returning multiple columns and/or rows, ExecuteScalar
returns only the first column of the first row.

The following code shows how to look up the product name for a specific product
ID:

void GetProductNameExecuteScalar(int ProductID, out string ProductName)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind"))
 {
 SqlCommand cmd = new SqlCommand("LookupProductNameScalar", conn);
 cmd.CommandType = CommandType.StoredProcedure;

70 Microsoft <book title>

 cmd.Parameters.Add("@ProductID", ProductID);
 conn.Open();
 ProductName = (string)cmd.ExecuteScalar();
 }
}

� To use ExecuteScalar to retrieve a single item
1. Establish a SqlCommand object to call a stored procedure.
2. Open the connection.
3. Call the ExecuteScalar method. Notice that this method returns an object type.

This contains the value of the first column retrieved and must be cast to the
appropriate type.

4. Close the connection.

The preceding code uses the following stored procedure:

CREATE PROCEDURE LookupProductNameScalar
@ProductID int
AS
SELECT TOP 1 ProductName
FROM Products
WHERE ProductID = @ProductID
GO

How to Use a Stored Procedure Output or Return Parameter to Re-
trieve a Single Item
You can look up a single value by using a stored procedure output or return param-
eter. Use of an output parameter is illustrated in the following code:

void GetProductNameUsingSPOutput(int ProductID, out string ProductName)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind"))
 {
 SqlCommand cmd = new SqlCommand("LookupProductNameSPOutput", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 SqlParameter paramProdID = cmd.Parameters.Add("@ProductID", ProductID);
 ParamProdID.Direction = ParameterDirection.Input;
 SqlParameter paramPN =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramPN.Direction = ParameterDirection.Output;

 conn.Open();
 cmd.ExecuteNonQuery();
 ProductName = paramPN.Value.ToString();
 }
}

.NET Data Access Architecture Guide 71

� To retrieve a single value with a stored procedure output parameter
1. Establish a SqlCommand object to call the stored procedure.
2. Set up any input parameters and the single output parameter by adding

SqlParameters to the SqlCommand’s Parameters collection.
3. Open the connection.
4. Call the ExecuteNonQuery method of the SqlCommand object.
5. Close the connection.
6. Retrieve the output value by using the Value property of the output

SqlParameter.

The preceding code uses the following stored procedure.

CREATE PROCEDURE LookupProductNameSPOutput
@ProductID int,
@ProductName nvarchar(40) OUTPUT
AS
SELECT @ProductName = ProductName
FROM Products
WHERE ProductID = @ProductID
GO

The following code illustrates the use of a return value to indicate whether a particu-
lar row exists. From a coding perspective, this is similar to using stored procedure
output parameters, except that you must explicitly set the SqlParameter direction to
ParameterDirection.ReturnValue.

bool CheckProduct(int ProductID)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind"))
 {
 SqlCommand cmd = new SqlCommand("CheckProductSP", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add("@ProductID", ProductID);
 SqlParameter paramRet =
 cmd.Parameters.Add("@ProductExists", SqlDbType.Int);
 paramRet.Direction = ParameterDirection.ReturnValue;
 conn.Open();
 cmd.ExecuteNonQuery();
 }
 return (int)paramRet.Value == 1;
}

72 Microsoft <book title>

� To check whether a particular row exists by using a stored procedure return value
1. Establish a SqlCommand object to call the stored procedure.
2. Set up an input parameter that contains the primary key value of the row to be

accessed.
3. Set up the single return value parameter. Add a SqlParameter object to the

SqlCommand’s Parameters collection, and set its direction to
ParameterDirection.ReturnValue.

4. Open the connection.
5. Call the ExecuteNonQuery method of the SqlCommand object.
6. Close the connection.
7. Retrieve the return value by using the Value property of the return value

SqlParameter.

The preceding code uses the following stored procedure.

CREATE PROCEDURE CheckProductSP
@ProductID int
AS
IF EXISTS(SELECT ProductID
 FROM Products
 WHERE ProductID = @ProductID)
 return 1
ELSE
 return 0
GO

How to Use a SqlDataReader to Retrieve a Single Item
You can use a SqlDataReader object to obtain a single output value by calling the
ExecuteReader method of the command object. This requires slightly more code
because the SqlDataReader Read method must be called, and then the desired value
is retrieved through one of the reader’s accessor methods. Use of a SqlDataReader
object is illustrated in the following code.

bool CheckProductWithReader(int ProductID)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind"))
 {
 SqlCommand cmd = new SqlCommand("CheckProductExistsWithCount", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add("@ProductID", ProductID);
 cmd.Parameters["@ProductID"].Direction = ParameterDirection.Input;
 conn.Open();
 using(SqlDataReader reader = cmd.ExecuteReader(
 CommandBehavior.SingleResult))

.NET Data Access Architecture Guide 73

 {
 if(reader.Read())
 {
 return (reader.GetInt32(0) > 0);
 }
 return false;
 }
}

The preceding code assumes the following stored procedure.

CREATE PROCEDURE CheckProductExistsWithCount
@ProductID int
AS
SELECT COUNT(*) FROM Products
WHERE ProductID = @ProductID
GO

How to Code ADO.NET Manual Transactions
The following code shows how to take advantage of the transaction support offered
by the SQL Server .NET Data Provider to protect a funds transfer operation with a
transaction. This operation transfers money between two accounts located in the
same database.

public void TransferMoney(string toAccount, string fromAccount, decimal amount)
{
 using (SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=SimpleBank"))
 {
 SqlCommand cmdCredit = new SqlCommand("Credit", conn);
 cmdCredit.CommandType = CommandType.StoredProcedure;
 cmdCredit.Parameters.Add(new SqlParameter("@AccountNo", toAccount));
 cmdCredit.Parameters.Add(new SqlParameter("@Amount", amount));

 SqlCommand cmdDebit = new SqlCommand("Debit", conn);
 cmdDebit.CommandType = CommandType.StoredProcedure;
 cmdDebit.Parameters.Add(new SqlParameter("@AccountNo", fromAccount));
 cmdDebit.Parameters.Add(new SqlParameter("@Amount", amount));

 conn.Open();
 // Start a new transaction
 using (SqlTransaction trans = conn.BeginTransaction())
 {
 // Associate the two command objects with the same transaction
 cmdCredit.Transaction = trans;
 cmdDebit.Transaction = trans;
 try
 {
 cmdCredit.ExecuteNonQuery();
 cmdDebit.ExecuteNonQuery();

74 Microsoft <book title>

 // Both commands (credit and debit) were successful
 trans.Commit();
 }
 catch(Exception ex)
 {
 // transaction failed
 trans.Rollback();
 // log exception details . . .
 throw ex;
 }
 }
 }
}

How to Perform Transactions with Transact-SQL
The following stored procedure illustrates how to perform a transactional funds
transfer operation within a Transact-SQL stored procedure.

CREATE PROCEDURE MoneyTransfer
@FromAccount char(20),
@ToAccount char(20),
@Amount money
AS
BEGIN TRANSACTION
— PERFORM DEBIT OPERATION
UPDATE Accounts
SET Balance = Balance - @Amount
WHERE AccountNumber = @FromAccount
IF @@RowCount = 0
BEGIN
 RAISERROR('Invalid From Account Number', 11, 1)
 GOTO ABORT
END
DECLARE @Balance money
SELECT @Balance = Balance FROM ACCOUNTS
WHERE AccountNumber = @FromAccount
IF @BALANCE < 0
BEGIN
 RAISERROR('Insufficient funds', 11, 1)
 GOTO ABORT
END
— PERFORM CREDIT OPERATION
UPDATE Accounts
SET Balance = Balance + @Amount
WHERE AccountNumber = @ToAccount
IF @@RowCount = 0
BEGIN
 RAISERROR('Invalid To Account Number', 11, 1)
 GOTO ABORT
END
COMMIT TRANSACTION

.NET Data Access Architecture Guide 75

RETURN 0
ABORT:
 ROLLBACK TRANSACTION
GO

This stored procedure uses the BEGIN TRANSACTION, COMMIT TRANSAC-
TION, and ROLLBACK TRANSACTION statements to manually control the
transaction.

How to Code a Transactional .NET Class
The following example code shows three serviced .NET managed classes that are
configured for automatic transactions. Each class is annotated with the Transaction
attribute, whose value determines whether or not a new transaction stream should
be started or whether the object should share the stream of its immediate caller.
These components work together to perform a bank money transfer. The Transfer
class is configured with the RequiresNew transaction attribute, and the Debit and
Credit classes are configured with Required. As a result, at run time all three objects
will share the same transaction.

using System;
using System.EnterpriseServices;

[Transaction(TransactionOption.RequiresNew)]
public class Transfer : ServicedComponent
{
 [AutoComplete]
 public void Transfer(string toAccount,
 string fromAccount, decimal amount)
 {
 try
 {
 // Perform the debit operation
 Debit debit = new Debit();
 debit.DebitAccount(fromAccount, amount);
 // Perform the credit operation
 Credit credit = new Credit();
 credit.CreditAccount(toAccount, amount);
 }
 catch(SqlException sqlex)
 {
 // Handle and log exception details
 // Wrap and propagate the exception
 throw new TransferException("Transfer Failure", sqlex);
 }
 }
}
[Transaction(TransactionOption.Required)]
public class Credit : ServicedComponent
{

76 Microsoft <book title>

 [AutoComplete]
 public void CreditAccount(string account, decimal amount)
 {
 try
 {
 using(SqlConnection conn = new SqlConnection(
 "Server=(local); Integrated Security=SSPI"; database="SimpleBank"))
 {
 SqlCommand cmd = new SqlCommand("Credit", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@AccountNo", account));
 cmd.Parameters.Add(new SqlParameter("@Amount", amount));
 conn.Open();
 cmd.ExecuteNonQuery();
 }
 }
 }catch(SqlException sqlex){
 // Log exception details here
 throw; // Propagate exception
 }
}
[Transaction(TransactionOption.Required)]
public class Debit : ServicedComponent
{
 public void DebitAccount(string account, decimal amount)
 {
 try
 {
 using(SqlConnection conn = new SqlConnection(
 "Server=(local); Integrated Security=SSPI"; database="SimpleBank"))
 {
 SqlCommand cmd = new SqlCommand("Debit", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@AccountNo", account));
 cmd.Parameters.Add(new SqlParameter("@Amount", amount));
 conn.Open();
 cmd.ExecuteNonQuery();
 }
 }
 catch (SqlException sqlex)
 {
 // Log exception details here
 throw; // Propagate exception back to caller
 }
 }
}

.NET Data Access Architecture Guide 77

Authors
Alex Mackman, Chris Brooks, Steve Busby, Ed Jezierski, Jason Hogg, Roberta
Leibovitz (Modeled Computation) and Colin Campbell (Modeled Computation)

Collaborators
Many thanks to the following contributors and reviewers:

Bill Vaughn, Mike Pizzo, Pablo Castro, Doug Rothaus, Kevin White, Blaine Dokter,
David Schleifer, Graeme Malcolm (Content Master), Bernard Chen (Sapient),
Matt Drucker (Turner Broadcasting), Steve Kirk, David Sceppa, Scott Densmore,
Diego González (Lagash Systems)

To learn more about .NET best practices, please visit the patterns & practices
Web page.

To participate in an online collaborative development environment on this topic,
join the GotDotNet workspace: Microsoft Patterns & Practices Data Access for
.NET Workspace, at http://www.gotdotnet.com/Community/Workspaces
/workspace.aspx?id=c20d12b0-af52-402b-9b7c-aaeb21d1f431. Please share your Data
Access Block questions, suggestions, and customizations with the community in this
workspace

Questions? Comments? Suggestions? For feedback on the content of this article,
please e-mail us at devfdbck@microsoft.com.

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices

Proven practices for predictable results

Patterns & practices are Microsoft’s recommendations for architects, software developers,
and IT professionals responsible for delivering and managing enterprise systems on the
Microsoft platform. Patterns & practices are available for both IT infrastructure and software
development topics.

Patterns & practices are based on real-world experiences that go far beyond white papers
to help enterprise IT pros and developers quickly deliver sound solutions. This technical
guidance is reviewed and approved by Microsoft engineering teams, consultants, Product
Support Services, and by partners and customers. Organizations around the world have
used patterns & practices to:

Reduce project cost
� Exploit Microsoft’s engineering efforts to save time and money on projects

� Follow Microsoft’s recommendations to lower project risks and achieve predictable outcomes

Increase confidence in solutions
� Build solutions on Microsoft’s proven recommendations for total confidence and predictable

results

� Provide guidance that is thoroughly tested and supported by PSS, not just samples, but
production quality recommendations and code

Deliver strategic IT advantage
� Gain practical advice for solving business and IT problems today, while preparing companies

to take full advantage of future Microsoft technologies.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

pat ter ns & pract ices

Proven practices for predictable results

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

Patterns & practices are available for both IT infrastructure and software development
topics. There are four types of patterns & practices available:

Reference Architectures

Reference Architectures are IT system-level architectures that address the business
requirements, operational requirements, and technical constraints for commonly occurring
scenarios. Reference Architectures focus on planning the architecture of IT systems and
are most useful for architects.

Reference Building Blocks

References Building Blocks are re-usable sub-systems designs that address common technical
challenges across a wide range of scenarios. Many include tested reference implementations to
accelerate development.

Reference Building Blocks focus on the design and implementation of sub-systems and are most
useful for designers and implementors.

Operational Practices

Operational Practices provide guidance for deploying and managing solutions in a production
environment and are based on the Microsoft Operations Framework. Operational Practices focus on
critical tasks and procedures and are most useful for production support personnel.

Patterns

Patterns are documented proven practices that enable re-use of experience gained from solving
similar problems in the past. Patterns are useful to anyone responsible for determining the
approach to architecture, design, implementation, or operations problems.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices cur rent t i t les

December 2002

Reference Architectures
Microsoft Systems Architecture—Enterprise Data Center 2007 pages
Microsoft Systems Architecture—Internet Data Center 397 pages
Application Architecture for .NET: Designing Applications and Services 127 pages
Microsoft SQL Server 2000 High Availability Series: Volume 1: Planning 92 pages
Microsoft SQL Server 2000 High Availability Series: Volume 2: Deployment 128 pages
Enterprise Notification Reference Architecture for Exchange 2000 Server 224 pages
Microsoft Content Integration Pack for Content Management Server 2001

and SharePoint Portal Server 2001 124 pages
UNIX Application Migration Guide 694 pages
Microsoft Active Directory Branch Office Guide: Volume 1: Planning 88 pages
Microsoft Active Directory Branch Office Series Volume 2: Deployment and

Operations 195 pages
Microsoft Exchange 2000 Server Hosting Series Volume 1: Planning 227 pages
Microsoft Exchange 2000 Server Hosting Series Volume 2: Deployment 135 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 1: Planning 306 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 2: Deployment 166 pages

Reference Building Blocks
Data Access Application Block for .NET 279 pages
.NET Data Access Architecture Guide 60 pages
Designing Data Tier Components and Passing Data Through Tiers 70 pages
Exception Management Application Block for .NET 307 pages
Exception Management in .NET 35 pages
Monitoring in .NET Distributed Application Design 40 pages
Microsoft .NET/COM Migration and Interoperability 35 pages
Production Debugging for .NET-Connected Applications 176 pages
Authentication in ASP.NET: .NET Security Guidance 58 pages
Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication 608 pages

Operational Practices
Security Operations Guide for Exchange 2000 Server 136 pages
Security Operations for Microsoft Windows 2000 Server 188 pages
Microsoft Exchange 2000 Server Operations Guide 113 pages
Microsoft SQL Server 2000 Operations Guide 170 pages
Deploying .NET Applications: Lifecycle Guide 142 pages
Team Development with Visual Studio .NET and Visual SourceSafe 74 pages
Backup and Restore for Internet Data Center 294 pages

For current list of titles visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

	Front Cover
	Contents
	Introduction
	Who Should Read This Document
	What You Must Know
	What's New

	Introducing ADO.NET
	.NET Data Providers
	Stored Procedures vs. Direct SQL
	Properties vs. Constructor Arguments

	Managing Database Connections
	Using Connection Pooling
	Storing Connection Strings
	Connection Usage Patterns

	Error Handling
	.NET Exceptions
	Generating Errors from Stored Procedures

	Performance
	Retrieving Multiple Rows
	Retrieving a Single Row
	Retrieving a Single Item

	Connecting Through Firewalls
	Choosing a Network Library
	Distributed Transactions

	Handling BLOBs
	Where to Store BLOB Data

	Performing Database Updates with DataSets
	Update Usage Patterns
	Initializing DataAdapters for Update
	Using Stored Procedures
	Managing Concurrency
	Correctly Updating Null Fields
	More Information

	Using Strongly Typed DataSet Objects
	When to Use Strongly Typed DataSets
	Generating DataSet Classes

	Working with Null Data Fields
	Transactions
	Choosing a Transaction Model
	Using Manual Transactions
	Using Automatic Transactions

	Data Paging
	Comparing the Options
	Using the Fill Method of SqlDataAdapter
	Using ADO
	Using a Manual Implementation

	Appendix
	How to Enable Object Construction for a .NET Class
	How to Use a SqlDataAdapter To Retrieve Multiple Rows
	How to Use a SqlDataReader to Retrieve Multiple Rows
	How to Use an XmlReader to Retrieve Multiple Rows
	How to Use Stored Procedure Output Parameters to Retrieve a Single Row
	How to Use a SqlDataReader to Retrieve a Single Row
	How to Use ExecuteScalar to Retrieve a Single Item
	How to Use a Stored Procedure Output or Return Parameter to Retrieve a Single Item
	How to Use a SqlDataReader to Retrieve a Single Item
	How to Code ADO.NET Manual Transactions
	How to Perform Transactions with Transact-SQL
	How to Code a Transactional .NET Class

	Authors
	Collaborators

	Additional Resources

